{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
dopamine
to a specific field?
Status:
US Approved Rx
(2019)
Source:
ANDA212919
(2019)
Source URL:
First marketed in 1931
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Amphetamine is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. Amphetamine was discovered in 1887 and exists as two enantiomers: levoamphetamine and dextroamphetamine. The mode of therapeutic action in ADHD is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. At higher dosages, they cause release of dopamine from the mesocorticolimbic system and the nigrostriatal dopamine systems. Amphetamine may also act as a direct agonist on central 5-HT receptors and may inhibit monoamine oxidase (MAO). In the periphery, amphetamines are believed to cause the release of noradrenaline by acting on the adrenergic nerve terminals and alpha- and beta-receptors. Modulation of serotonergic pathways may contribute to the calming affect. The drug interacts with VMAT enzymes to enhance release of DA and 5-HT from vesicles. It may also directly cause the reversal of DAT and SERT. Several currently prescribed amphetamine formulations contain both enantiomers, including Adderall, Dyanavel XR, and Evekeo, the last of which is racemic amphetamine sulfate. Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively. Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.
Status:
US Approved Rx
(1984)
Source:
ANDA088366
(1984)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
The ammonium cation is a positively charged polyatomic ion with the chemical formula NH4+. Ammonium ions are a waste product of the metabolism of animals. In fish and aquatic invertebrates, it is excreted directly into the water. In mammals, sharks, and amphibians, it is converted in the urea cycle to urea, because urea is less toxic and can be stored more efficiently. In birds, reptiles, and terrestrial snails, metabolic ammonium is converted into uric acid, which is solid and can therefore be excreted with minimal water loss. Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source. The ammonium ion (NH4+) in the body plays an important role in the maintenance of acid-base balance. The kidney uses ammonium (NH4+) in place of sodium (Na+) to combine with fixed anions in maintaining acid-base balance, especially as a homeostatic compensatory mechanism in metabolic acidosis. When a loss of hydrogen ions (H+) occurs and serum chloride (Cl–) decreases, sodium is made available for combination with bicarbonate (HCO3–). This creates an excess of sodium bicarbonate (NaHCO3) which leads to a rise in blood pH and a state of metabolic alkalosis. The therapeutic effects of Ammonium (as Ammonium Chloride) depend upon the ability of the kidney to utilize ammonia in the excretion of an excess of fixed anions and the conversion of ammonia to urea by the liver, thereby liberating hydrogen (H+) and chloride (Cl–) ions into the extracellular fluid.
Status:
US Approved Rx
(1985)
Source:
NDA020145
(1985)
Source URL:
First marketed in 1921
Source:
Spirit of Glyceryl Trinitrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.
Status:
US Approved Rx
(2004)
Source:
NDA021264
(2004)
Source URL:
First marketed in 1880
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Apomorphine (brand names: Apokyn, Ixense, Spontane, Uprima) is indicated for the acute, intermittent treatment of hypomobility, “off” episodes (“end-of-dose wearing off” and unpredictable “on/off” episodes) in patients with advanced Parkinson’s disease. Apomorphine has been studied as an adjunct to other medications. It is a non-ergoline dopamine agonist with high in vitro binding affinity for the dopamine D4 receptor, and moderate affinity for the dopamine D2, D3, and D5, and adrenergic α1D, α2B, α2C receptors. The precise mechanism of action as a treatment for Parkinson’s disease is unknown, although it is believed to be due to stimulation of post-synaptic dopamine D2-type receptors within the caudate-putamen in the brain.
Status:
US Approved Rx
(2017)
Source:
NDA209963
(2017)
Source URL:
First marketed in 1860
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cocaine is an alkaloid ester extracted from the leaves of plants including coca. Cocaine is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine is addictive due to its effect on the reward pathway in the brain. After a short period of use, there is a high risk that dependence will occur. Its use also increases the risk of stroke, myocardial infarction, lung problems in those who smoke it, blood infections, and sudden cardiac death. Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar which can result in additional toxicity. Following repeated doses, a person may have decreased the ability to feel pleasure and be very physically tired. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This results in greater concentrations of these three neurotransmitters in the brain. It can easily cross the blood-brain barrier and may lead to the breakdown of the barrier.
Status:
US Approved OTC
Source:
21 CFR 341.20(a)(2) cough/cold:nasal decongestant pseudoephedrine hydrochloride
Source URL:
First approved in 1961
Source:
DISOPHROL by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Pseudoephedrine is a sympathomimetic drug. Pseudoephedrine acts as an adrenomimetic and inhibitor of monoamine transporters. Ephedra sinica, a species of ephedra (ma huang), contains ephedrine and pseudoephedrine. Ephedra has been found to stimulate the nervous system, increase airflow into the lungs and constrict blood vessels. In combination with caffeine, ephedra appears to cause weight loss. Pseudoephedrine is a decongestant that shrinks blood vessels in the nasal passages. Pseudoephedrine is used to relieve nasal or sinus congestion caused by the common cold, sinusitis, and hay fever and other respiratory allergies.
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
Investigational
Source:
INN:pudafensine [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Source:
NCT04055649: Phase 2 Interventional Recruiting Malignant Ovarian Epithelial Tumor
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
TIC10 (TIC10 isomer or ONC201 isomer) is a potent, orally active, and stable small molecule and is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The isomeric structure of TIC10/ONC201 is critical to its activity: anti-cancer activity is associated with the angular structure and not the linear TIC10 isomer. TIC10 transcriptionally induces a sustained up-regulation TRAIL in tumors and normal cells in a p53-independent manner. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 crosses the blood-brain barrier. TIC10 treatment caused tumor regression in the HCT116 p53−/− xenograft, RKO human colon cancer xenograft–bearing mice and human triple-negative breast cancer xenografts and significantly prolonged the survival of Eμ-myc transgenic mice, which spontaneously develop metastatic lymphoma from weeks 9 to 12 of age by 4 weeks.