U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 611 - 620 of 669 results

Status:
US Previously Marketed
Source:
CAMOPRIM CT AMODIAQUINE by PD
(1961)
Source URL:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Status:
US Previously Marketed
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
US Previously Marketed
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
US Previously Marketed
Source:
KECTIL DIHYDROSTREPTOMYCIN SULFATE by BRISTOL LABS
(1961)
Source URL:
First approved in 1948
Source:
Dihydrostreptomycin Sulfate by Merck
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dihydrostreptomycin is an antibiotic compound derived from streptomycin by reduction with hydrogen. The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins, in addition it binds mechanosensitive channel of large conductance (MscL) and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. It has about the same degree of antibacterial activity as streptomycin, but it is less effective against some gram-negative microorganisms. Because it has a higher risk of irreversible deafness, and its effectiveness is no greater that that of streptomycin, dihydrostreptomycin is no longer used clinically. To date dihydrostreptomycin is approved for veterinary use to treat bacterial infections.
Status:
US Previously Marketed
Source:
KECTIL DIHYDROSTREPTOMYCIN SULFATE by BRISTOL LABS
(1961)
Source URL:
First approved in 1948
Source:
Dihydrostreptomycin Sulfate by Merck
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dihydrostreptomycin is an antibiotic compound derived from streptomycin by reduction with hydrogen. The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins, in addition it binds mechanosensitive channel of large conductance (MscL) and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. It has about the same degree of antibacterial activity as streptomycin, but it is less effective against some gram-negative microorganisms. Because it has a higher risk of irreversible deafness, and its effectiveness is no greater that that of streptomycin, dihydrostreptomycin is no longer used clinically. To date dihydrostreptomycin is approved for veterinary use to treat bacterial infections.
Sulfamethazine is a sulfonamide used to treat a variety of bacterial diseases in animals. It inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA) for binding to dihydropteroate synthetase (dihydrofolate synthetase).
Tubocurarine, a naturally occurring alkaloid, is used to treat smoking withdrawl syndrom. Tubocurarine, the chief alkaloid in tobacco products, binds stereo-selectively to nicotinic-cholinergic receptors at the autonomic ganglia, in the adrenal medulla, at neuromuscular junctions, and in the brain. Two types of central nervous system effects are believed to be the basis of Tubocurarine's positively reinforcing properties. A stimulating effect is exerted mainly in the cortex via the locus ceruleus and a reward effect is exerted in the limbic system. At low doses the stimulant effects predominate while at high doses the reward effects predominate. Intermittent intravenous administration of Tubocurarine activates neurohormonal pathways, releasing acetylcholine, norepinephrine, dopamine, serotonin, vasopressin, beta-endorphin, growth hormone, and ACTH. Tubocurarine competes with acetylcholine for post-synaptic nicotinic NM receptors and blocks them.
Status:
US Previously Marketed
First marketed in 1934

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Sodium thiopental (also known as Sodium Pentothal, thiopental) was discovered in 1930s by investigators working for Abbott Laboratories. Thiopental sodium was used for the induction of general anesthesia and is used as an adjunct to provide hypnosis during balanced anesthesia with other anesthetic agents, including analgesics and muscle relaxants. Thiopental sodium was also used as an adjunct for control of convulsive disorders of various etiology, including those caused by local anesthetics. Finally, thiopental sodium had been used to reduce the intracranial pressure in patients with increased intracranial pressure, if controlled ventilation is provided. Nevertheless, these prescriptions of drug were discontinued. In addition, this drug was banned for use in US executions. Thiopental sodium acts through the CNS with particular activity in the mesencephalic reticular activating system. It was shown, that mechanism of action of sodium thiopental via GABAA receptor. Thiopental binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged.
Status:
US Previously Marketed
First marketed in 1921
Source:
gentian violet
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Gentian violet ((GV) hexamethyl pararosaniline, also known as crystal violet, methyl violet) is a triphenylmethane dye with anti-bacterial, anti-fungal, anti-helminithic, anti-trypanosomal, anti-angiogenic and anti-tumor properties. GV has a lengthy history and has been used successfully as monotherapy and an adjunct to treatment in a variety of diseases. Gentian violet interacts with negatively charged components of bacterial cells including the lipopolysaccharide (on the cell wall), the peptidoglycan and DNA. A similar cell penetration and DNA binding process is thought to take place for fungal cells as well. Because Gentian violet is a mutagen and mitotic poison, cell growth is consequently inhibited. A photodynamic action of gentian violet, apparently mediated by a free-radical mechanism, has recently been described in bacteria and in the protozoan T. cruzi. Evidence also suggests that gentian violet dissipates the bacterial (and mitochondrial) membrane potential by inducing permeability. This is followed by respiratory inhibition. This anti-mitochondrial activity might explain gentian violet's efficacy towards both bacteria and yeast with relatively mild effects on mammalian cells.
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.

Showing 611 - 620 of 669 results