U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 621 - 630 of 669 results

Status:
US Previously Marketed
Source:
Stearic Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Stearic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Stearic Acid is a typical example of a fatty acid, which are essentially long hydrocarbon chains containing a carboxyl group at one end and a methyl group at the other. The chain lengths can vary from 3 (propionic acid) to 24 (lignoceric acid) but the majority of fatty acids found in hydrogenated vegetable or animal oils are around C16-C20 in length. Stearic acid is a saturated acid, since there are no double bonds between neighbouring carbon atoms. Stearic acid is found in various animal and plant fats, and is a major component of cocoa butter and shea butter. Stearic acid is a very common amino acid is used in the manufacturing of more than 3,200 skin and hair care products sold in the United States. On product labels, it is sometimes listed under other names, including Century 1240, cetylacetic acid, Emersol 120, Emersol 132, Emersol 150, Formula 300 and Glycon DP. Stearic Acid is mainly used in the production of detergents, soaps, and cosmetics such as shampoos and shaving cream products. Stearic acid is used along with castor oil for preparing softeners in textile sizing. Being inexpensively available and chemically benign, stearic acid finds many niche applications It is used in the manufacture of candles, and as a hardener in candies when mixed with simple sugar and corn syrup. It is also used to produce dietary supplements. In fireworks, stearic acid is often used to coat metal powders such as aluminum and iron. This prevents oxidation, allowing compositions to be stored for a longer period of time. Stearic acid is a common lubricant during injection molding and pressing of ceramic powders. It is also used as a mold release for foam latex that is baked in stone molds. Stearic acid is known antidiabetic and antioxidant agent.
Status:
US Previously Marketed
Source:
Benzosulphinide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Benzosulphinide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Saccharin is the most established of the artificial sweeteners on the market, this mixture of dextrose and saccharin has been in use for over a century and is found in diet versions of soft drinks. It is 300-500 times sweeter than sugar and contains zero calories. In 1977, the FDA tried to ban its use after evidence showed it caused cancer in rats. Extensive lobbying by the diet food industry allowed products to stay on the shelves as long as they carried warnings about the cancer risks in animals. This warning was removed in 2001 when the Calorie Control Council insisted the link between animal and human cancers could not automatically be made. Consumption of saccharin-sweetened products can benefit diabetics as the substance goes directly through the human digestive system without being digested. While saccharin has no food energy, it can trigger the release of insulin in humans due to its sweet taste. The T1R2/R3 sweet taste receptor exist on the surface of pancreatic beta cells. Saccharin is a unique in that it inhibits glucose-stimulated insulin secretion (GSIS) at submaximal and maximal glucose concentrations, with the other sweeteners having no effect. Investigation of saccharin’s dose-response characteristics showed that concentrations of 0.1 and 0.5 mM stimulated insulin secretion, while concentrations of 1 and 2.5 mM inhibited insulin secretion. Saccharin’s effect on insulin secretion was shown to be reversible in INS-1 832/13 clonal pancreatic beta cells after chronic exposure to 1 mM saccharin. Artificial sweeteners may affect insulin secretion via interaction with the sweet taste receptor, also saccharin may affect other cellular processes linked to insulin secretion, and that these effects are both time- and concentration-dependent
Status:
US Previously Marketed
Source:
Hydrochloric Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Hydrochloric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


HYDROCHLORIC ACID is formed by dissolving hydrogen chloride gas in water. It is a strong corrosive acid that is commonly used as a laboratory reagent. Also, it constitutes the majority of gastric acid, the human digestive fluid. Skin contact with HYDROCHLORIC ACID can cause redness, pain, and severe skin burns. It may cause severe burns to the eye and permanent eye damage.
Status:
US Previously Marketed
Source:
Sugar of Milk U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Sugar of Milk U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Lactose is the most important carbohydrate in the milk of most species. Its biosynthesis takes place in the mammary gland. The molecular structures of α- and β -lactose differ in the orientation of a hydrogen- and a hydroxyl group on carbon atom no.1 in the glucose moiety. Both forms change into one another continuously. At room temperature, the equilibrium results in a ratio of about 40% α-lactose and 60% β-lactose. The fact that two forms of lactose exist which differ in molecular structure has profound effects on various properties of lactose such as crystallization behavior, crystal morphology, solid-state properties, and solubility. The intestine does not actively absorb lactose unless it is split into its two-monosaccharide components, i.e. glucose and galactose. This hydrolysis of lactose is affected by the enzyme lactase, which is produced by the epithelium cells in the brush-border of the small intestine. Thus, the capacity of mammals to digest lactose is dependent on the lactase activity in the intestine. The maximum activity of the enzyme occurs shortly after birth and declines during the weaning period, after which it remains at a relatively constant level. Genetically determined factors governing residual lactase activity also exist. Individuals having low lactase activity are called lactose malabsorbers. Lactose intolerance is a condition in which people have symptoms due to the decreased ability to digest lactose. The principal symptom of lactose intolerance is an adverse reaction to products containing lactose (primarily milk), including abdominal bloating and cramps, flatulence, diarrhea, nausea, borborygmi, and vomiting (particularly in adolescents). These appear one-half to two hours after consumption.
Status:
US Previously Marketed
Source:
Physostigmine Salicylate U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Physostigmine Salicylate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Physostigmine (Phy) is one of the oldest drug isolated from Calabar beans and successfully used for the treatment of glaucoma in 1864. Since then, it has been widely employed for various therapeutic purposes. Recently, it has gained prominence because of its clinical trials in the treatment of Alzheimer's disease. Physostigmine was used to treat glaucoma. It can be applied topically to the conjunctiva. Phy is also considered to be a potent prophylactic antidote for organophosphate poisoning. It is a reversible cholinesterase (ChE) inhibitor and has a short duration of action. For the last 50 years, numerous authors have shown that pretreatment with Phy would rapidly improve the incapacitating effects of organophosphate intoxication in various animal species. Phy carbamylates to a portion of ChE enzyme and thus protects the enzyme from binding with organophosphate, which are irreversible ChE inhibitors. The carbamylated ChE enzyme decarbamylates to free the enzyme for normal functioning. The rates of decarbamylation of butyrylcholinesterase (BuChE) in plasma and ChE in brain and muscle are different and are related to the half-life of Phy in these tissues. In addition to ChE inhibition, Phy has a direct action on acetylcholine (ACh) receptor ionophore complex by interacting with the ACh-gated cation channels. A cholinesterase inhibitor that is rapidly absorbed through membranes. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity.
Status:
US Previously Marketed
Source:
Homatropine Hydrobromide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Homatropine Hydrobromide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (EPIMERIC)


Conditions:

Homatropine (used in a form of bromide or methylbromide salts) is an analogue of atropine, which acts as an antagonist of muscarinic receptors. Homatropine was approved for the treatment of cough in combination with hydrocodone bitartrate.
Status:
US Previously Marketed
Source:
Benzosulphinide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Benzosulphinide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Saccharin is the most established of the artificial sweeteners on the market, this mixture of dextrose and saccharin has been in use for over a century and is found in diet versions of soft drinks. It is 300-500 times sweeter than sugar and contains zero calories. In 1977, the FDA tried to ban its use after evidence showed it caused cancer in rats. Extensive lobbying by the diet food industry allowed products to stay on the shelves as long as they carried warnings about the cancer risks in animals. This warning was removed in 2001 when the Calorie Control Council insisted the link between animal and human cancers could not automatically be made. Consumption of saccharin-sweetened products can benefit diabetics as the substance goes directly through the human digestive system without being digested. While saccharin has no food energy, it can trigger the release of insulin in humans due to its sweet taste. The T1R2/R3 sweet taste receptor exist on the surface of pancreatic beta cells. Saccharin is a unique in that it inhibits glucose-stimulated insulin secretion (GSIS) at submaximal and maximal glucose concentrations, with the other sweeteners having no effect. Investigation of saccharin’s dose-response characteristics showed that concentrations of 0.1 and 0.5 mM stimulated insulin secretion, while concentrations of 1 and 2.5 mM inhibited insulin secretion. Saccharin’s effect on insulin secretion was shown to be reversible in INS-1 832/13 clonal pancreatic beta cells after chronic exposure to 1 mM saccharin. Artificial sweeteners may affect insulin secretion via interaction with the sweet taste receptor, also saccharin may affect other cellular processes linked to insulin secretion, and that these effects are both time- and concentration-dependent
Status:
US Previously Marketed
First marketed in 1914

Class (Stereo):
CHEMICAL (ABSOLUTE)



Emetine is a principal alkaloid of ipecac, isolated from the ground roots of Uragoga ipecacuanha. Early use of emetine was in the form of oral administration of the extract of ipecac root, or ipecacuanha. This extract contains several, including cephaeline, and others. The identification of emetine as a more potent agent improved the treatment of amoebiasis. While the use of emetine still caused nausea, it was more effective than the crude extract of ipecac root. Additionally, emetine could be administered hypodermically which still produced nausea, but not to the degree experienced in oral administration. Emetine dihydrochloride hydrate is used in the laboratory to block protein synthesis in eukaryotic cells. It does this by binding to the 40S subunit of the ribosome. Emetine induces hypotension by blocking adrenoreceptors. Also, emetine was identified as a specific inhibitor of HIF-2α protein stability and transcriptional activity. Heavy or over usage of emetine can carry the risk of developing proximal myopathy and/or cardiomyopathy.
Status:
US Previously Marketed
First marketed in 1914

Class (Stereo):
CHEMICAL (ABSOLUTE)



Emetine is a principal alkaloid of ipecac, isolated from the ground roots of Uragoga ipecacuanha. Early use of emetine was in the form of oral administration of the extract of ipecac root, or ipecacuanha. This extract contains several, including cephaeline, and others. The identification of emetine as a more potent agent improved the treatment of amoebiasis. While the use of emetine still caused nausea, it was more effective than the crude extract of ipecac root. Additionally, emetine could be administered hypodermically which still produced nausea, but not to the degree experienced in oral administration. Emetine dihydrochloride hydrate is used in the laboratory to block protein synthesis in eukaryotic cells. It does this by binding to the 40S subunit of the ribosome. Emetine induces hypotension by blocking adrenoreceptors. Also, emetine was identified as a specific inhibitor of HIF-2α protein stability and transcriptional activity. Heavy or over usage of emetine can carry the risk of developing proximal myopathy and/or cardiomyopathy.
Status:
US Previously Marketed
Source:
Chloretone by Parke-Davis
(1911)
Source URL:
First marketed in 1911
Source:
Chloretone by Parke-Davis
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Chlorobutanol, or trichloro-2-methyl-2-propanol, is an analgesic and sedative hypnotic in man, and an experimental general anesthetic. It has antibacterial and antifungal properties. It is also used chemical preservative for parenteral drugs. It was found, that chlorobutanol inhibited mammalian Nav 1.2 channels at concentrations less than those used to preserve parenteral solutions. Its mechanism of inhibiting Na channels differs from that of local anesthetics in that it does not show use dependent or state dependent inhibition.

Showing 621 - 630 of 669 results