U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 60 results

Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Status:
Investigational
Source:
INN:monophosphothiamine
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Monophosphothiamine is thiamine derivative used for the treatment of neuritis, polyneuritis, asthenic conditions (weakness), as an additional remedy for chronic blood circulation insufficiency, chronic gastritis accompanied by motor and secretory disorders functions of the stomach. Monophosphothiamine underwent metabolic phosphorylation to active metabolite thiamine pyrophosphate, that acts as a coenzyme in the different metabolic process.
Status:
Investigational
Source:
INN:monophosphothiamine
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Monophosphothiamine is thiamine derivative used for the treatment of neuritis, polyneuritis, asthenic conditions (weakness), as an additional remedy for chronic blood circulation insufficiency, chronic gastritis accompanied by motor and secretory disorders functions of the stomach. Monophosphothiamine underwent metabolic phosphorylation to active metabolite thiamine pyrophosphate, that acts as a coenzyme in the different metabolic process.
Status:
Investigational
Source:
INN:monophosphothiamine
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Monophosphothiamine is thiamine derivative used for the treatment of neuritis, polyneuritis, asthenic conditions (weakness), as an additional remedy for chronic blood circulation insufficiency, chronic gastritis accompanied by motor and secretory disorders functions of the stomach. Monophosphothiamine underwent metabolic phosphorylation to active metabolite thiamine pyrophosphate, that acts as a coenzyme in the different metabolic process.
Status:
Investigational
Source:
INN:bentiamine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Bentiamine (also known as dibenzoyl thiamine), a derivative of thiamine, is rapidly absorbed and converted to thiamine. Experiments on rodent have shown that this compound had low toxicity and absence of carcinogenicity.
Status:
Possibly Marketed Outside US
Source:
Aronamin Gold by OASIS TRADING
Source URL:
First approved in 2018

Class (Stereo):
CHEMICAL (RACEMIC)


Fursultiamine, also known as thiamine tetrahydrofurfuryl disulfide (TTFD) is an oral FDA- approved thiamine derivative for treating vitamin B1 deficiency and is very rapidly metabolized into thiamine. Fursultiamine possesses a mild beneficial effect in patients with Alzheimer's disease. The improvement could be observed not only in their emotional or other mental symptoms but also in intellectual function. Only mildly impaired subjects showed cognitive improvement. In addition was shown, that fursultiamine have a beneficial clinical effect on some autistic children. Some relatively recent experiments have revealed that fursultiamine was a unique antagonist of hepcidin in vitro that could serve as a template for the development of drug candidates that inhibit the hepcidin-ferroportin interaction. This inhibition is a key for the treatment of anemia of inflammation (AI), a common in patients with infection, autoimmune diseases, cancer, and chronic kidney disease.

Showing 41 - 50 of 60 results