U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 913 results

Gilteritinib, also known as ASP2215, is a potent FLT3/AXL inhibitor, which showed potent antileukemic activity against AML with either or both FLT3-ITD and FLT3-D835 mutations. In in vitro, among the 78 tyrosine kinases tested, Gilteritinib inhibited FLT3, LTK, ALK, and AXL kinases by over 50% at 1 nM with an IC50 value of 0.29 nM for FLT3, approximately 800-fold more potent than for c-KIT, the inhibition of which is linked to a potential risk of myelosuppression. Gilteritinib inhibited the growth of MV4-11 cells, which harbor FLT3-ITD, with an IC50 value of 0.92 nM, accompanied with inhibition of pFLT3, pAKT, pSTAT5, pERK, and pS6. Gilteritinib decreased tumor burden in bone marrow and prolonged the survival of mice intravenously transplanted with MV4-11 cells. In previous preclinical studies, gilteritinib has demonstrated superior antitumor effects when given in combination with AraC and either DNR or IDR compared with combination chemotherapy. In November 2018, the FDA approved gilteritinib for treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) with a FLT3 mutation as detected by an FDA-approved test.
Duvelisib (IPI-145), is an orally available, small-molecule, selective dual inhibitor of phosphatidylinositol 3 kinase (PI3K) δ and γ isoforms originated by Intellikine (owned by Takeda) and developed by Infinity Pharmaceuticals. Orally administered duvelisib was rapidly absorbed, with a dose-proportional increase in exposure. The compound produced a half-life of approximately 7-12 hours, following 14 days of dosing. Duvelisib exerts profound effects on adaptive and innate immunity by inhibiting B and T cell proliferation, blocking neutrophil migration, and inhibiting basophil activation. Duvelisib blockade of PI3K-δ and PI3K-γ potentially lead to significant therapeutic effects in multiple inflammatory, autoimmune, and hematologic diseases. The molecule is in phase III development as a combination therapy for patients with haematological malignancies such as chronic lymphocytic leukemia and follicular lymphoma.
Stiripentol is an anticonvulsant drug used in the treatment of epilepsy. It recently proved to increase the GABAergic transmission in vitro in an experimental model of immature rat. Clinical studies were based on the fact that STP also acts as an inhibitor of CYP3A4, CYP1A2, and CYP2C19 in vivo in epileptic patients. Side effects are largely due to the increase in plasma concentrations of other anticonvulsants and can be reduced by lowering the dose of those drugs. Nausea and vomiting are particularly noted when used in combination with sodium valproate. It appears to increase the potency of phenobarbital, primidone, phenytoin, carbamazepine, clobazam and diazepam.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tecovirimat (ST-246) is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. The antiviral activity is specific for orthopoxviruses and the compound does not inhibit the replication of other RNA- and DNA-containing viruses or inhibit cell proliferation at concentrations of compound that are antiviral. ST-246 targets vaccinia virus p37, a viral protein required for envelopment and secretion of extracellular forms of virus. The compound is orally bioavailable and protects multiple animal species from lethal orthopoxvirus challenge. rug substance and drug product processes have been developed and commercial scale batches have been produced using Good Manufacturing Processes (GMP). Human phase I clinical trials have shown that ST-246 is safe and well tolerated in healthy human volunteers. Based on the results of the clinical evaluation, once a day dosing should provide plasma drug exposure in the range predicted to be antiviral based on data from efficacy studies in animal models of orthopoxvirus disease.
Edaravone is a free radical scavenger developed for the treatment of amyotrophic lateral sclerosis.
Acalabrutinib, also known as ACP-196, is a novel irreversible second-generation Bruton’s tyrosine kinase (BTK) inhibitor, which prevents the activation of the B-cell antigen receptor (BCR) signaling pathway and that, was rationally designed to be more potent and selective than ibrutinib. This drug in clinical trials phase III for treatment the treatment of relapsed chronic lymphocytic leukemia. Also in combination with others drugs, Acalabrutinib in phase II of clinical trials for the treatment Glioblastoma Multiforme, Mantle Cell Lymphoma, Squamous Cell Carcinoma of the Head and Neck, Rheumatoid Arthritis and some others.
Letermovir (AIC246 or MK-8228), a 3,4-dihydro-quinazoline- 4-yl-acetic acid derivative, is the prototype viral terminase complex inhibitor that is most advanced in its clinical development. The novel compound was initially developed by AiCuris. In April 2011, the drug was granted orphan drug designation for prevention of CMV disease by the European Commission. In August 2011, the US Food and Drug Administration granted it a fast track designation. In 2012, the results of Phase IIb clinical trials using letermovir in bone marrow transplant patients were presented at various international meetings, and the data were subsequently published in 2014.42 It`s continued clinical development is currently undertaken in agreement with Merck. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. It targets the UL56 subunit of the viral terminase complex. Letermovir is currently in Phase III development.
Midostaurin, a derivate of staurosporine (N-benzoylstaurosporine), is a broad-spectrum inhibitor of Ser/Thr and Tyr protein kinases. Midostaurin showed broad antiproliferative activity against various tumor and normal cell lines in vitro and is able to reverse the p-glycoprotein-mediated multidrug resistance of tumor cells in vitro. Midostaurin showed in vivo antitumor activity as single agent and inhibited angiogenesis in vivo. At the end of 2016 FDA granted Priority Review to the PKC412 (midostaurin) new drug application (NDA) for the treatment of acute myeloid leukemia (AML) in newly-diagnosed adults with an FMS-like tyrosine kinase-3 (FLT3) mutation, as well as for the treatment of advanced systemic mastocytosis (SM).
Venetoclax (trade name Venclexta, also known as ABT-199) is a selective and orally bioavailable small-molecule inhibitor of BCL-2, an antiapoptotic protein. BCL-2 and its related proteins BCL-XL and MCL-1 bind to and sequester pro-apoptotic signals in the cell, causing a down-regulation of apoptosis. As an oncogene and an important regulator of apoptosis, BCL-2 overexpression therefore results in increased tumor cell survival and resistance to chemotherapy. FDA approved Venetoclax in April 2016 for the treatment of patients with chronic lymphocytic leukemia (CLL) with 17p deletion, as detected by an FDA approved test, who have received at least one prior therapy. Also this drug in phase 3 clinical trial in combination therapy for the treatment patients with refractory myeloma and Acute Myeloid Leukemia. Common side effects include neutropenia, nausea, anemia, diarrhea, upper respiratory tract infection. Major side effects include tumor lysis syndrome and severe neutropenia.
Rucaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of advanced mutant BRCA ovarian cancer. Rucaparib is being investigated in clinical trials against prostate cancer, breast cancer and other neoplasms.