{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG" in comments (approximate match)
Status:
US Approved Rx
(2022)
Source:
NDA216387
(2022)
Source URL:
First approved in 2017
Source:
NDA210259
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acalabrutinib, also known as ACP-196, is a novel irreversible second-generation Bruton’s tyrosine kinase (BTK) inhibitor, which prevents the activation of the B-cell antigen receptor (BCR) signaling pathway and that, was rationally designed to be more potent and selective than ibrutinib. This drug in clinical trials phase III for treatment the treatment of relapsed chronic lymphocytic leukemia. Also in combination with others drugs, Acalabrutinib in phase II of clinical trials for the treatment Glioblastoma Multiforme, Mantle Cell Lymphoma, Squamous Cell Carcinoma of the Head and Neck, Rheumatoid Arthritis and some others.
Status:
US Approved Rx
(2017)
Source:
NDA209939
(2017)
Source URL:
First approved in 2017
Source:
NDA209939
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Letermovir (AIC246 or MK-8228), a 3,4-dihydro-quinazoline- 4-yl-acetic acid derivative, is the prototype viral terminase complex inhibitor that is most advanced in its clinical development. The novel compound was initially developed by AiCuris. In April 2011, the drug was granted orphan drug designation for prevention of CMV disease by the European Commission. In August 2011, the US Food and Drug Administration granted it a fast track designation. In 2012, the results of Phase IIb clinical trials using letermovir in bone marrow transplant patients were presented at various international meetings, and the data were subsequently published in 2014.42 It`s continued clinical development is currently undertaken in agreement with Merck. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. It targets the UL56 subunit of the viral terminase complex. Letermovir is currently in Phase III development.
Status:
US Approved Rx
(2016)
Source:
NDA208573
(2016)
Source URL:
First approved in 2016
Source:
NDA208573
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Venetoclax (trade name Venclexta, also known as ABT-199) is a selective and orally bioavailable small-molecule inhibitor of BCL-2, an antiapoptotic protein. BCL-2 and its related proteins BCL-XL and MCL-1 bind to and sequester pro-apoptotic signals in the cell, causing a down-regulation of apoptosis. As an oncogene and an important regulator of apoptosis, BCL-2 overexpression therefore results in increased tumor cell survival and resistance to chemotherapy. FDA approved Venetoclax in April 2016 for the treatment of patients with chronic lymphocytic leukemia (CLL) with 17p deletion, as detected by an FDA approved test, who have received at least one prior therapy. Also this drug in phase 3 clinical trial in combination therapy for the treatment patients with refractory myeloma and Acute Myeloid Leukemia. Common side effects include neutropenia, nausea, anemia, diarrhea, upper respiratory tract infection. Major side effects include tumor lysis syndrome and severe neutropenia.
Status:
US Approved Rx
(2016)
Source:
NDA209115
(2016)
Source URL:
First approved in 2016
Source:
NDA209115
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Rucaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of advanced mutant BRCA ovarian cancer. Rucaparib is being investigated in clinical trials against prostate cancer, breast cancer and other neoplasms.
Status:
US Approved Rx
(2016)
Source:
NDA208054
(2016)
Source URL:
First approved in 2016
Source:
NDA208054
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (also known as Fluciclovine (18F)) was approved under brand name AXUMIN as a radioactive diagnostic agent indicated for positron emission tomography (PET) imaging in men with suspected prostate cancer recurrence. Besides, this radioactive compound is used in patients with cervical, ovarian epithelial or endometrial cancers. Fluciclovine F 18 is a synthetic amino acid transported across mammalian cell membranes by amino acid transporters, such as LAT-1 and ASCT2, which are upregulated in prostate cancer cells, but as was shown, this compound has a higher affinity for ASCT2 in comparison with other transporters.
Status:
US Approved Rx
(2016)
Source:
NDA207999
(2016)
Source URL:
First approved in 2016
Source:
NDA207999
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Obeticholic acid (also known as INT-747), is a potent, orally bioavailable farnesoid X receptor (FXR) agonist. The key role of the farnesoid X receptor (FXR) as a regulator of bile and cholesterol metabolism in the liver, with preclinical data from numerous studies providing strong rationale for the advancement of FXR agonists as hepatoprotective therapeutics in chronic liver disease. Obeticholic acid is marketed under the trade name Ocaliva. Ocaliva is specifically indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA) in adults with an inadequate response to UDCA, or as monotherapy in adults unable to tolerate UDCA.
Status:
US Approved Rx
(2016)
Source:
NDA205838
(2016)
Source URL:
First approved in 2016
Source:
NDA205838
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Brivaracetam (UCB 34714, trade name Briviact), the 4-n-propyl analog of levetiracetam, is a racetam derivative with anticonvulsant properties. Briviact is indicated as adjunctive therapy in the treatment of partial-onset seizures in patients 16 years of age and older with epilepsy. Brivaracetam is believed to act by binding to the ubiquitous synaptic vesicle glycoprotein 2A (SV2A), like levetiracetam, but with 20-fold greater affinity. There is some evidence that racetams including levetiracetam and brivaracetam access the luminal side of recycling synaptic vesicles during vesicular endocytosis. They may reduce excitatory neurotransmitter release and enhance synaptic depression during trains of high-frequency activity, such as is believed to occur during epileptic activity.
Status:
US Approved Rx
(2015)
Source:
NDA207953
(2015)
Source URL:
First approved in 2015
Source:
NDA207953
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Trabectedin (ET-743) is a marine alkaloid isolated from the Caribbean tunicate Ecteinascidia turbinata. Trabectedin was approved for the treatment of liposarcoma or leiomyosarcoma (USA and Europe) and ovarian cancer (only in Europe). Trabectedin exerts its anti-cancer action by binding guanine residues in the minor groove of DNA. The binding prevents DNA from interacting with transcription factors and the reparation system and results in perturbation of the cell cycle and eventual cell death.
Status:
US Approved Rx
(2022)
Source:
ANDA213092
(2022)
Source URL:
First approved in 2015
Source:
NDA206947
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Lenvatinib, developed by Eisai Co., is a receptor tyrosine kinase (RTK) inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). Lenvatinib also inhibits other RTKs that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1, 2, 3, and 4; the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. These receptor tyrosine kinases (RTKs) located in the cell membrane play a central role in the activation of signal transduction pathways involved in the normal regulation of cellular processes, such as cell proliferation, migration, apoptosis and differentiation, and in pathogenic angiogenesis, lymphogenesis, tumour growth and cancer progression. In particular, VEGF has been identified as a crucial regulator of both physiologic and pathologic angiogenesis and increased expression of VEGF is associated with a poor prognosis in many types of cancers. Lenvatinib is indicated for the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine (RAI)-refractory differentiated thyroid cancer. Most patients with thyroid cancer have a very good prognosis with treatment (98% 5 year survival rate) involving surgery and hormone therapy. However, for patients with RAI-refractory thyroid cancer, treatment options are limited and the prognosis is poor, leading to a push for the development of more targeted therapies such as lenvatinib. Lenvatinib is marketed under the trade name Lenvima, it is indicated for the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer.
Status:
US Approved Rx
(2015)
Source:
NDA205750
(2015)
Source URL:
First approved in 2015
Source:
NDA205750
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cholic acid is a primary bile acid synthesized from cholesterol in the liver. Endogenous bile acids including cholic acid enhance bile flow and provide the physiologic feedback inhibition of bile acid synthesis. The mechanism of action of cholic acid has not been fully established; however, it is known that cholic acid and its conjugates are
endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR). FXR regulates enzymes and transporters that are involved in
bile acid synthesis and in the enterohepatic circulation to maintain bile acid homeostasis under normal physiologic conditions. U.S. Food and Drug Administration approved Cholbam (cholic acid) capsules, the first FDA approved treatment for pediatric and adult patients with bile acid synthesis disorders due to single enzyme defects, and for patients with peroxisomal disorders (including Zellweger spectrum disorders).