{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Agent Affecting Digestive System or Metabolism[C78276]" in comments (approximate match)
Status:
Class (Stereo):
CHEMICAL (ACHIRAL)
Nolinium bromide (NB) is a nonanticholinergic, gastric acid antisecretory agent and a gastrointestinal tract antispasmodic agent. The gastrointestinal antispasmodic action of NB has been demonstrated in a variety of test systems. The compound inhibited electrically induced contractions of rabbit ileum and nicotine-induced contractions of rat ileum in vitro, gastric emptying in fasted rats, and intestinal transport of a charcoal meal in mice. In the anesthetized dog, NB antagonized colonic contractions induced by acetylcholine, histamine, serotonin, and pelvic nerve stimulation, and duodenal contractions due to vagal stimulation and acetylcholine. In the unanesthetized dog, feeding induced colonic and duodenal motilities were inhibited by NB. The antisecretory action of NB may involve inhibition of enzymes of gastric acid secretion, specifically histamine-stimulated adenylate cyclase and potassium-stimulated ATPase. NB has no direct histamine-H2 receptor blocking properties. Nolinium bromide inhibits in a dose-dependent manner both the gastric H+, K+-ATPase activity and H+ uptake ability of the gastric microsomes. Increasing concentrations of K+ could reverse the nolinium bromide inhibition of both the H+, K+-ATPase activity and vesicular H+ transport. Nolinium bromide interferes primarily with the K+-dependent phosphatase step and thereby reduces the turnover of the enzyme. The drug acts as a K+ antagonist in the gastric H+ +K+-dependent ATPase reaction.
Status:
US Previously Marketed
Source:
ROSIGLITAZONE MALEATE by ROXANE
(2008)
Source URL:
First approved in 1999
Source:
AVANDIA by WOODWARD
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Rosiglitazone acts as a highly selective and potent agonist at peroxisome proliferator activated receptors (PPAR) in target tissues for insulin action such as adipose tissue, skeletal muscle, and liver. It is FDA approved for the treatment of as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Inhibitors of CYP2C8 (e.g., gemfibrozil) may increase rosiglitazone levels; inducers of CYP2C8 (e.g., rifampin) may decrease rosiglitazone levels. Common adverse reactions include edema, weight gain, and headache.
Status:
US Previously Marketed
Source:
ROSIGLITAZONE MALEATE by ROXANE
(2008)
Source URL:
First approved in 1999
Source:
AVANDIA by WOODWARD
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Rosiglitazone acts as a highly selective and potent agonist at peroxisome proliferator activated receptors (PPAR) in target tissues for insulin action such as adipose tissue, skeletal muscle, and liver. It is FDA approved for the treatment of as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Inhibitors of CYP2C8 (e.g., gemfibrozil) may increase rosiglitazone levels; inducers of CYP2C8 (e.g., rifampin) may decrease rosiglitazone levels. Common adverse reactions include edema, weight gain, and headache.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
QUINTESS-N ATTAPULGITE by LILLY
(1962)
Source URL:
First approved in 1962
Source:
QUINTESS-N ATTAPULGITE by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Attapulgite (magnesium aluminum phyllosilicate) is a clay mineral found in soils common to the Southeastern United States. It is widely used in medicine as an over-the-counter drug for the treatment of diarrhea. Attapulgite acts by physically binding to aacids and toxic substances in the stomach and digestive tract.
Status:
US Previously Marketed
Source:
D B I by CIBA
(1961)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Phenformin is a biguanide hypoglycemic agent with actions and uses similar to those of metformin. It activates AMP-activated protein kinase (AMPK) and inhibits mTORC1 signaling. Phenformin used for the treatment of diabetes. Phenformin was removed from the U.S. market 20 years ago because of a high incidence of lactic acidosis. Risk factors for the development of lactic acidosis include renal deficiency, hepatic disease, cardiac disease, and drug interaction such as cimetidine. Phenformin exerts potential anti-neoplastic action.
Status:
US Previously Marketed
Source:
TOLBUTAMIDE by ASCOT
(1983)
Source URL:
First approved in 1957
Source:
ORINASE by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tolbutamide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It is structurally similar to acetohexamide, chlorpropamide and tolazamide and belongs to the sulfonylurea class of insulin secretagogues, which act by stimulating β cells of the pancreas to release insulin. Sulfonylureas lower blood glucose in patients with NIDDM by directly stimulating the acute release of insulin from functioning beta cells of pancreatic islet tissue by an unknown process that involves a sulfonylurea receptor (receptor 1) on the beta cell. Sulfonylureas inhibit the ATP-potassium channels on the beta cell membrane and potassium efflux, which results in depolarization and calcium influx, calcium-calmodulin binding, kinase activation, and release of insulin-containing granules by exocytosis, an effect similar to that of glucose.