{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG|Positive" in comments (approximate match)
Status:
US Approved Rx
(2019)
Source:
BLA208157
(2019)
Source URL:
First approved in 1982
Source:
BLA018780
Source URL:
Class:
PROTEIN
Conditions:
Human Insulin, also known as Regular Insulin, is a short-acting form of insulin used for the treatment of hyperglycemia caused by Type 1 and Type 2 Diabetes. Human insulin is produced by recombinant DNA technology and is identical to endogenously produced insulin. Insulin lowers blood glucose levels by stimulating peripheral glucose uptake by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits lipolysis in adipocytes, inhibits proteolysis, and enhances protein synthesis.
Human insulin begins to exert its effects within 30 minutes of subcutaneous administration, while peak levels occur 3-4 hours after administration. Due to its quick onset of action, human insulin is considered "bolus insulin" as it provides high levels of insulin in a short period of time to mimic the release of endogenous insulin from the pancreas after meals. Bolus insulin is often combined with once daily, long-acting "basal insulin" to provide low concentrations of background insulin that can keep blood sugar stable between meals or overnight. Use of basal and bolus insulin together is intended to mimic the pancreas' production of endogenous insulin, with a goal of avoiding any periods of hypoglycemia.
Status:
US Approved Rx
(1970)
Source:
NDA016750
(1970)
Source URL:
First approved in 1970
Source:
NDA016750
Source URL:
Class:
PROTEIN
Conditions:
Cosyntropin (ACTH (1–24)) is a synthetic peptide that is identical to the 24-amino acid segment at the N-terminal of adrenocorticotropic hormone. It is intended for use as a diagnostic agent in the screening of patients presumed to have adrenocortical insufficiency. Cosyntropin may bind to sites located on the adrenergic nerve endings associated with the cardiac tissue, and such binding would interfere with the neuronal reuptake of the catecholamines
Status:
US Approved Rx
(2019)
Source:
NDA212097
(2019)
Source URL:
First approved in 1960
Source:
GLUCAGON by LILLY
Source URL:
Class:
PROTEIN
Conditions:
Glucagon is a polypeptide hormone identical to human glucagon that increases blood glucose and relaxes smooth muscle of the gastrointestinal tract. Glucagon is synthesized in a special non-pathogenic laboratory strain of Escherichia coli bacteria that has been genetically altered by the addition of the gene for glucagon. Glucagon generally elevates the concentration of glucose in the blood by promoting gluconeogenesis and glycogenolysis. Glucagon also decreases fatty acid synthesis in adipose tissue and the liver, as well as promoting lipolysis in these tissues, which causes them to release fatty acids into circulation where they can be catabolised to generate energy in tissues such as skeletal muscle when required. Glucose is stored in the liver in the form of the polysaccharide glycogen, which is a glucan (a polymer made up of glucose molecules). Liver cells (hepatocytes) have glucagon receptors. When glucagon binds to the glucagon receptors, the liver cells convert the glycogen into individual glucose molecules and release them into the bloodstream, in a process known as glycogenolysis. As these stores become depleted, glucagon then encourages the liver and kidney to synthesize additional glucose by gluconeogenesis. Glucagon turns off glycolysis in the liver, causing glycolytic intermediates to be shuttled to gluconeogenesis. Glucagon also regulates the rate of glucose production through lipolysis. Glucagon induces lipolysis in humans under conditions of insulin suppression (such as diabetes mellitus type 1). Glucagon increases blood glucose concentration and is used in the treatment of hypoglycemia. Glucagon administered through a parenteral route relaxes smooth muscle of the stomach, duodenum, small bowel, and colon. Glucagon is also indicated as a diagnostic aid in the radiologic examination of the stomach, duodenum, small bowel, and colon when diminished intestinal motility would be advantageous.
Status:
US Approved Rx
(2013)
Source:
ANDA200219
(2013)
Source URL:
First marketed in 1928
Class:
PROTEIN
Targets:
Conditions:
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work.
Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
Status:
Investigational
Source:
NCT01775462: Phase 2 Interventional Completed X-Linked Hypohidrotic Ectodermal Dysplasia
(2013)
Source URL:
Class:
PROTEIN
Status:
Investigational
Source:
NCT04401423: Phase 2 Interventional Completed COVID-19
(2021)
Source URL:
Class:
PROTEIN
Targets:
Conditions:
Angiotensin (1-7) [Ang 1-7] is a 7 amino acid peptide generated predominantly from Ang II by the action of Ang-converting enzyme 2. Ang 1-7 can act as a negative modulator of aldosterone secretion in vitro and in vivo. The endogenous heptapeptide angiotensin-(1-7) (Ang-(1-7)) is a RAS component that has a central role in the alternative axis. It is generated by the
cleavage of Ang-II by the action of the angiotensin converting
enzyme 2 (ACE 2) and acts via interaction with the
G-protein coupled receptor Mas. Angiotensin (1-7) induces vasorelaxation through release of NO and prostaglandins, perhaps through activation of a non-AT1, non-AT2 receptor, Mas. Counteracts the vasoconstrictive and proliferative effects of angiotensin II and stimulates vasopressin (anti-diuretic hormone) release in vivo. Clinical uses range from treatment of cardiovascular-related diseases,
ocular pathologies, metabolic dysfunctions, brain conditions and
degenerative diseases to applications in cell differentiation and
hematopoiesis, tumor therapy, acute lung injury, fibrosis, infection,
among others. Tarix Orphan is developing TXA127 for rare neuromuscular and connective tissue diseases. TXA127 is a pharmaceutical formulation of the naturally occurring peptide, Angiotensin (1-7). TXA127 has been effective in animal models of Duchenne muscular dystrophy (DMD), Limb-girdle muscular dystrophy (LGMD), congenital muscular dystrophy MDC1A, Marfan syndrome, and Dystrophic Epidermolysis Bullosa (DEB). FDA granted rare pediatric disease designation to TXA127 from Tarix to treat recessive dystrophic epidermolysis bullosa (RDEB). TXA127 has been granted orphan drug status by FDA as a treatment for pulmonary arterial hypertension, to enhance engraftment in patients receiving a stem cell transplant, and for Myelodysplastic Syndrome (MDS). Tarix Orphan has broad IP protection for TXA127 and Orphan Drug Designations (ODDs) have been granted for DMD LGMD and DEB in the U.S., and for DMD in Europe. Tarix Orphan aims to initiate a clinical trials for both DMD and DEB in early 2018 and has an active IND for a Phase II trial in DMD, as well as Fast Track designation for DMD.
Status:
Investigational
Source:
NCT03118570: Phase 2 Interventional Completed Osteogenesis Imperfecta, Type I
(2017)
Source URL:
Class:
PROTEIN
Status:
Investigational
Source:
NCT04311697: Phase 2/Phase 3 Interventional Completed Critical COVID-19 With Respiratory Failure
(2020)
Source URL:
Class:
PROTEIN
Aviptadil, a vasoactive intestinal polypeptide, is a vasodilator and lowers blood pressure if administered intravenously. In 2007, the orphan designation was granted by the European Commission for aviptadil for the treatment of sarcoidosis, a disease of unknown cause that affects many organs and tissues, most commonly the lungs. Sarcoidosis is characterized by specific microscopic lesions called granulomas. Aviptadil is able to influence the immune system that decreases the inflammatory processes seen in sarcoidosis by acting on the white blood cells (lymphocytes and monocytes) involved in the formation of the granulomas. In combination with phentolamine, the drug is used to treat erectile dysfunction. In addition, aviptadil has been studied in phase II clinical trials for patients with respiratory distress syndrome.
Status:
Investigational
Source:
NCT03395704: Phase 2 Interventional Completed Hereditary Hemochromatosis
(2017)
Source URL:
Class:
PROTEIN
Status:
Investigational
Source:
NCT01176461: Phase 1 Interventional Completed Melanoma (Skin)
(2010)
Source URL:
Class:
PROTEIN