U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 129 results

Cocaine is an alkaloid ester extracted from the leaves of plants including coca. Cocaine is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine is addictive due to its effect on the reward pathway in the brain. After a short period of use, there is a high risk that dependence will occur. Its use also increases the risk of stroke, myocardial infarction, lung problems in those who smoke it, blood infections, and sudden cardiac death. Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar which can result in additional toxicity. Following repeated doses, a person may have decreased the ability to feel pleasure and be very physically tired. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This results in greater concentrations of these three neurotransmitters in the brain. It can easily cross the blood-brain barrier and may lead to the breakdown of the barrier.
Status:
First marketed in 1827

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Morphine is one of the most important and widely used opioid for the treatment of chronic and acute pain: the very wide interindividual variability in the patients’ response to the drug may have genetic derivations. Sulphate salt of morphine sold under the many brand names, one of them, DURAMORPH, which is indicated for the management of pain severe enough to require use of an opioid analgesic by intravenous administration, and for which alternative treatments are not expected to be adequate. In addition for the epidural or intrathecal management of pain without attendant loss of motor, sensory, or sympathetic function. Morphine is a full opioid agonist and is relatively selective for the mu-opioid receptor, although it can bind to other opioid receptors at higher doses. The principal therapeutic action of morphine is analgesia. Like all full opioid agonists, there is no ceiling effect for analgesia with morphine. The precise mechanism of the analgesic action is unknown. However, specific CNS opioid receptors for endogenous compounds with opioid-like activity have been identified throughout the brain and spinal cord and are thought to play a role in the analgesic effects of this drug. Morphine has a high potential for addiction and abuse. Common side effects include drowsiness, vomiting, and constipation. Caution is advised when used during pregnancy or breast-feeding, as morphine will affect the baby.
Status:
First marketed in 0652
Source:
alcohol
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Alcohols exhibit rapid broad-spectrum antimicrobial activity against vegetative bacteria (including mycobacteria), viruses, and fungi but are not sporicidal. They are, however, known to inhibit sporulation and spore germination, but this effect is reversible. Because of the lack of sporicidal activity, alcohols are not recommended for sterilization but are widely used for both hard-surface disinfection and skin antisepsis. Lower concentrations may also be used as preservatives and to potentiate the activity of other biocides. Many alcohol products include low levels of other biocides (in particular chlorhexidine), which remain on the skin following evaporation of the alcohol, or excipients (including emollients), which decrease the evaporation time of the alcohol and can significantly increase product efficacy. Ethanol in combination with: chlorhexidine gluconate 1% was approved to use in surgical hand antiseptic. It significantly reduces the number of microorganisms on the hands and forearms prior to surgery or patient care. Ethanol is also used as a co-solvent to dissolve many insoluble drugs and to serve as a mild sedative in some medicinal formulations. Ethanol is metabolized by the hepatic enzyme alcohol dehydrogenase. Ethanol affects the brain’s neurons in several ways. It alters their membranes as well as their ion channels, enzymes, and receptors. Alcohol also binds directly to the receptors for acetylcholine, serotonin, GABA, and the NMDA receptors for glutamate. The sedative effects of ethanol are mediated through binding to GABA receptors and glycine receptors (alpha 1 and alpha 2 subunits). It also inhibits NMDA receptor functioning. In its role as an anti-infective, ethanol acts as an osmolyte or dehydrating agent that disrupts the osmotic balance across cell membranes.
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(2)(ii) cough/cold:antitussive codeine phosphate
Source URL:
First marketed in 1921
Source:
Codeine Sulphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Codeine is an opiate used to manage mild to moderate pain severe enough to require an opioid. Codeine is a selective agonist for the mu opioid receptor and has an affinity to delta and kappa-opioid receptors. In some countries, this drug is regulated under various narcotic control laws, because its chronic use can cause physical dependence. In others, it is available without a medical prescription in combination with paracetamol.

Class (Stereo):
CHEMICAL (ACHIRAL)

Isopropanolamine (1-Amino-2-propanol) is a colorless to yellowish liquid with an amine-like odor. It is miscible in water. Intermediate used in the production of dyes, lubrification oils, corrosion inhibitor, detergents, cutting fluids.
Diammonium carbonate is a salt with the chemical formula (NH4)2CO3. Since it readily degrades to gaseous ammonia and carbon dioxide upon heating, it is used as a leavening agent and also as smelling salt. Ammonium carbonate may be used as a leavening agent in traditional recipes, particularly those from northern Europe and Scandinavia (e.g. Speculoos, Tunnbröd or Lebkuchen). It also serves as an acidity regulator and has the E number E503. Ammonium carbonate is the main component of smelling salts, although the commercial scale of their production is small. Buckley's cough syrup from Canada today uses ammonium carbonate as an active ingredient intended to help relieve symptoms of bronchitis. Ammonium carbonate is also used as an emetic.
Status:
US Approved OTC
Source:
21 CFR 358.710(b)(4) dandruff:seborrheic dermatitis salicylic acid
Source URL:
First marketed in 1860
Source:
sodium salicylate
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Methyl salicylate (or methyl 2-hydroxybenzoate), also known as wintergreen oil, is a natural product and is present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Methyl salicylate is topically used in combination with methanol and under brand name SALONPAS to temporarily relieves mild to moderate aches and pains of muscles and joints associated with: strains, sprains, simple backache, arthritis, bruises. The precise mechanism of action of methyl salicylate is not known, but there is suggested, that it cause dilation of the capillaries thereby increasing blood flow to the area.
Status:
Investigational
Source:
NCT03781128: Phase 2 Interventional Recruiting Cluster Headache
(2019)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Lysergide (LSD) is a semi-synthetic hallucinogen and is one of the most potent drugs known. Recreational use became popular between the 1960s to 1980s, but is now less common. LSD was first synthesized by Albert Hoffman while working for Sandoz Laboratories in Basel in 1938. Some years later, during a re-evaluation of the compound, he accidentally ingested a small amount and described the first ‘trip’. During the 1950s and 1960s, Sandoz evaluated the drug for therapeutic purposes and marketed it under the name Delysid®. It was used for research into the chemical origins of mental illness. Recreational use started in the 1960s and is associated with the ‘psychedelic period’. LSD possesses a complex pharmacological profile that includes direct activation of serotonin, dopamine and norepinephrine receptors. In addition, one of its chief sites of action is that of compound-specific (“allosteric”) alterations in secondary messengers associated with 5HT2A and 5HT2C receptor activation and changes in gene expression. The hallucinogenic effects of LSD are likely due to agonism at 5HT2A and 5HT2C receptors. LSD is also an agonist at the majority of known serotonin receptors, including 5HT1A, 5HT1B, 5HT1D, 5HT5A, 5HT6 and 5HT7 receptors. During the 1960s, LSD was investigated for a variety of psychiatric indications, including the following: as an aid in treatment of schizophrenia; as a means of creating a "model psychosis"; as a direct antidepressant; and as an adjunct to psychotherapy. LSD is listed in Schedule I of the United Nations 1971 Convention on Psychotropic Substances.
Status:
Investigational
Source:
NCT01079455: Phase 3 Interventional Unknown status Coxarthrosis
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Corticosterone is an adrenocortical steroid, the major glucocorticoid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. Corticosterone is of minor importance in humans but is known, that it has a profound effect on the structure and function of the hippocampus. Brain corticosterone may involve memory storage and emotional stress might cause increases in plasma corticosterone.