{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "PART 862 -- CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES" in comments (approximate match)
Status:
US Previously Marketed
Source:
Quaalude by William Rorer
(1965)
Source URL:
First approved in 1962
Source:
BIPHETAMINE-T by STRASENBURGH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Methaqualone is a depressant that modulates the activity of the GABA receptors in the brain and nervous system. It promotes relaxation, sleepiness and sometimes a feeling of euphoria. It causes a drop in blood pressure and slows the pulse rate. These properties are the reason why it was initially thought to be a useful sedative and anxiolytic. Common side effects of Methaqualone include dizziness, nausea, vomiting, diarrhea, abdominal cramps, fatigue, itching, rashes, sweating, dry mouth, tingling sensation in arms and legs, seizures and its depressant effects include reduced heart rate and respiration. The drug became banned in many countries and was withdrawn from many markets in the early 1980s.
Status:
US Previously Marketed
Source:
PROPOXYPHENE HYDROCHLORIDE by ALRA
(1982)
Source URL:
First approved in 1957
Source:
DARVON by XANODYNE PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Propoxyphene is a centrally acting opiate analgesic. Propoxyphene is an odorless, freely soluble in water, white crystalline powder with a bitter taste. In vitro studies demonstrated propoxyphene and the metabolite norpropoxyphene inhibit sodium channels (local anesthetic effect) with norpropoxyphene being approximately 2 fold more potent than propoxyphene and propoxyphene approximately 10 fold more potent than lidocaine. Propoxyphene and norpropoxyphene inhibit the voltage-gated potassium current carried by cardiac rapidly activating delayed rectifier (hERG) channels with approximately equal potency. It is unclear if the effects on ion channels occur within therapeutic dose range. Propoxyphene is indicated for the relief of mild to moderate pain.
Status:
US Previously Marketed
Source:
ALLANTOMIDE SULFANILAMIDE by NATIONAL DRUG
(1961)
Source URL:
First marketed in 1936
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfanilamide is an anibiotic drug, which has been used for decades for the treatment of vulvovaginal candidiasis. The drug blocks folic acid synthesis in bacterias by inhibitin the enzyme dihydropteroate synthase.
Status:
US Approved Rx
(1984)
Source:
ANDA062533
(1984)
Source URL:
First approved in 1966
Source:
GARAMYCIN by SCHERING
Source URL:
Class:
MIXTURE
Targets:
Conditions:
Gentamicin is an antibiotic of the aminoglycoside group, is derived by the growth of Micromonospora purpurea, an actinomycete. Gentamicin is a complex of three different closely related aminoglycoside sulfates, Gentamicins C1, C2, and C1a. Gentamicin is a broad-spectrum antibiotic, but may cause ear and kidney damage. Gentamicin binds to the prokaryotic ribosome, inhibiting protein synthesis in susceptible bacteria. It is bactericidal in vitro against Gram-positive and Gram-negative bacteria. Adverse reactions include adverse renal effects, neurotoxicity (dizziness, vertigo, tinnitus, roaring in the ears, hearing loss, peripheral neuropathy or encephalopathy), respiratory depression, lethargy, confusion, depression, visual disturbances, etc.
Status:
US Approved Rx
(2001)
Source:
NDA021265
(2001)
Source URL:
First marketed in 1921
Class:
MIXTURE
Targets:
Conditions:
Cholecalciferol (/ˌkoʊləkælˈsɪfərɒl/) (vitamin D3) is one of the five forms of vitamin D. Cholecalciferol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestation of vitamin D deficiency is rickets, which is seen in children and results in bony deformities including bowed long bones. Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet (UV) B radiation with a wavelength of 290–320 nanometers penetrates uncovered skin and converts cutaneous 7-dehydrocholesterol to previtamin D3, which in turn becomes vitamin D3. In supplements and fortified foods, vitamin D is available in two forms, D2 (ergocalciferol) and D3 (cholecalciferol) that differ chemically only in their side-chain structure. Vitamin D2 is manufactured by the UV irradiation of ergosterol in yeast, and vitamin D3 is manufactured by the irradiation of 7-dehydrocholesterol from lanolin and the chemical conversion of cholesterol. The two forms have traditionally been regarded as equivalent based on their ability to cure rickets and, indeed, most steps involved in the metabolism and actions of vitamin D2 and vitamin D3 are identical. Both forms (as well as vitamin D in foods and from cutaneous synthesis) effectively raise serum 25(OH) D levels. Firm conclusions about any different effects of these two forms of vitamin D cannot be drawn. However, it appears that at nutritional doses, vitamins D2 and D3 are equivalent, but at high doses, vitamin D2 is less potent. The American Academy of Pediatrics (AAP) recommends that exclusively and partially breastfed infants receive supplements of 400 IU/day of vitamin D shortly after birth and continue to receive these supplements until they are weaned and consume ≥1,000 mL/day of vitamin D-fortified formula or whole milk. Cholecalciferol is used in diet supplementary to treat Vitamin D Deficiency. Cholecalciferol is inactive: it is converted to its active form by two hydroxylations: the first in the liver, the second in the kidney, to form calcitriol, whose action is mediated by the vitamin D receptor, a nuclear receptor which regulates the synthesis of hundreds of enzymes and is present in virtually every cell in the body. Calcitriol increases the serum calcium concentrations by increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein.
Status:
US Approved Rx
(1996)
Source:
BLA020604
(1996)
Source URL:
First approved in 1976
Class:
PROTEIN
Status:
Other
Class:
CONCEPT
Status:
Other
Class:
CONCEPT
Status:
Other
Class:
CONCEPT