U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 919 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Sodium ferric gluconate complex (brand name Ferrlecit by Sanofi) is an intravenously administered iron product. Ferrlecit is an iron complex. It works by providing the body with its necessary level of iron. Ferric gluconate has been shown to be effective in dialysis and non-dialysis associated anemia of chronic kidney disease (CKD). It has also been shown to be effective in improving responses to EPO in chemotherapy induced anemia.
Cromolyn is a mast cell stabilizer. In vitro and in vivo animal studies have shown that cromolyn sodium inhibits the degranulation of sensitized mast cells, which occurs after exposure to specific antigens. Cromolyn sodium acts by inhibiting the release of histamine and SRS-A (slow-reacting substance of anaphylaxis) from the mast cell. Cromolyn is indicated in the management of patients with mastocytosis, prophylaxis (long-term control) of bronchial asthma, prevention of exercise-induced bronchospasm, prevention and treatment of seasonal and perennial allergic rhinitis The most frequently reported adverse reactions attributed to cromolyn sodium treatment were: throat irritation or dryness, bad taste, cough, wheeze, nausea.
Ethacrynic acid is a monosulfonamyl loop or high ceiling diuretic. Ethacrynic acid acts on the ascending limb of the loop of Henle and on the proximal and distal tubules. Urinary output is usually dose dependent and related to the magnitude of fluid accumulation. Water and electrolyte excretion may be increased several times over that observed with thiazide diuretics, since ethacrynic acid inhibits reabsorption of a much greater proportion of filtered sodium than most other diuretic agents. Therefore, ethacrynic acid is effective in many patients who have significant degrees of renal insufficiency. Ethacrynic acid has little or no effect on glomerular filtration or on renal blood flow, except following pronounced reductions in plasma volume when associated with rapid diuresis. Ethacrynic acid inhibits symport of sodium, potassium, and chloride primarily in the ascending limb of Henle, but also in the proximal and distal tubules. This pharmacological action results in excretion of these ions, increased urinary output, and reduction in extracellular fluid. Diuretics also lower blood pressure initially by reducing plasma and extracellular fluid volume; cardiac output also decreases, explaining its antihypertensive action. Eventually, cardiac output returns to normal with an accompanying decrease in peripheral resistance. Its mode of action does not involve carbonic anhydrase inhibition. Ethacrynic acid is indicated for the treatment of high blood pressure and edema caused by diseases like congestive heart failure, liver failure, and kidney failure.

Class (Stereo):
CHEMICAL (ACHIRAL)



Mefenamic acid is a non-steroidal anti-inflammatory agent with analgesic, anti-inflammatory, and antipyretic properties. It is used for the treatment of mild to moderate pain, including menstrual pain, inflammation, and fever. Clinical use of mefenamic acid has generally declined in an era where other NSAID use has flourished. While having modes of action and general toxicities similar to other NSAIDs, mefenamic acid, as a member of the fenamates, nevertheless possesses some unique in vitro effects that have the potential to distinguish this agent from others. Use of this drug remains relevant for pain syndromes and some gynecological disorders, albeit with considerable competition from other NSAIDs. New basic science has considerably improved the understanding of the biochemistry of mefenamic acid. As well as maintaining its use in traditional settings, there is a tremendous potential for expanding the application of mefenamic acid to niche roles. Mefenamic acid binds the prostaglandin synthetase receptors COX-1 and COX-2, inhibiting the action of prostaglandin synthetase. Mefenamic acid concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because mefenamic acid is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues.
Status:
First approved in 1964
Source:
Virac by Ruson
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Valproic acid (VPA; valproate; di-n-propylacetic acid, DPA; 2-propylpentanoic acid, or 2-propylvaleric acid) was first synthesized in 1882, by Burton. FDA approved valproic acid for the treatment of manic episodes associated with bipolar disorder, for the monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures and adjunctive therapy in patients with multiple seizure types that include absence seizures and for the prophylaxis of migraine headaches. The mechanisms of VPA which seem to be of clinical importance in the treatment of epilepsy include increased gamma-aminobutyric acid (GABA)-ergic activity, reduction in excitatory neurotransmission, and modification of monoamines. Recently, it was discovered that the VPA is a class I selective histone deacetylase inhibitor. This activity can be distinguished from its therapeutically exploited antiepileptic activity.

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Iothalamic Acid is an iodine-containing organic anion used as a radiocontrast agent. It is available as sodium iothalamate (Iothalamate sodium) and meglumine iothalamate (Iothalmate meglumine). It can be administered intravenously or intravesically (into the urinary bladder). Iothalamate is indicated to visualize specific regions of the vascular system and blood flow in these areas to help in the diagnosis and evaluation of neoplasms (known or suspected) or vascular diseases (congenital or acquired) that may cause changes in normal vascular anatomy or physiology. Iothalamate meglumine injection is indicated for use in cerebral angiography, peripheral arteriography or venography, arterial digital subtraction angiography1 , and intravenous digital subtraction angiography. Iothalamate meglumine and iothalamate sodium injection is indicated for use in selective coronary arteriography, selective renal arteriography, and in intravenous digital subtraction angiography. othalamate meglumine and iothalamate sodium injection and iothalamate sodium injection are indicated to visualize the aorta and its major branches. However, the injection of iothalamate meglumine and iothalamate sodium is preferred because it generally causes less severe hemodynamic, neurotoxic, and cardiotoxic effects than the individual injection of iothalamate sodium. Radioactive formulation is also available as sodium iothalamate I-125 Injection (GLOFIL-125). It is indicated for evaluation of glomerular filtration in the diagnosis or monitoring of patients with renal disease.
Status:
First approved in 1954

Class (Stereo):
CHEMICAL (ACHIRAL)


This compound belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. A commonly used x-ray contrast medium. Used, alone or in combination, for a wide variety of diagnostic imaging methods, including angiography, urography, cholangiography, computed tomography, hysterosalpingography, and retrograde pyelography. It can be used for imaging the gastrointestinal tract in patients allergic to barium. Radiopaque agents are drugs used to help diagnose certain medical problems. They contain iodine, which blocks x-rays. Depending on how the radiopaque agent is given, it localizes or builds up in certain areas of the body. The resulting high level of iodine allows the x-rays to make a "picture" of the area. The areas of the body in which the radiopaque agent localizes will appear white on the x-ray film. This creates the needed distinction, or contrast, between one organ and other tissues.
Status:
First approved in 1952
Source:
Leucovorin by Lederle
Source URL:

Class (Stereo):
CHEMICAL (EPIMERIC)



Leucovorin is a compound similar to folic acid, which is a necessary vitamin. It has been around and in use for many decades. Leucovorin is a medication frequently used in combination with the chemotherapy drugs fluoruracil and methotrexate. Leucovorin is not a chemotherapy drug itself, however it is used in addition to these chemotherapy drugs to enhance anticancer effects (with fluorouracil) or to help prevent or lessen side effects (with methotrexate). Leucovorin is also used by itself to treat certain anemia problems when folic acid deficiency is present.
Status:
First approved in 1948
Source:
Pamisyl by Parke-Davis
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



4-AMINOSALICYLIC ACID (Paser) is an anti-tuberculosis drug used to treat tuberculosis in combination with other active agents. 4-AMINOSALICYLIC ACID (Paser) is most commonly used in patients with Multi-drug Resistant TB (MDR-TB) or when isoniazid and rifampin use is not possible due to a combination of resistance and/or intolerance. There are two mechanisms responsible for aminosalicylic acid's bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in the folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slow. Secondly, the aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis.
Status:
First approved in 1946

Class (Stereo):
CHEMICAL (ABSOLUTE)



Folic Acid is a B complex vitamin containing a pteridine moiety linked by a methylene bridge to para-aminobenzoic acid, which is joined by a peptide linkage to glutamic acid. Conjugates of Folic Acid are present in a wide variety of foods, particularly liver, kidneys, yeast and leafy green vegetables. Commercially available Folic Acid is prepared synthetically. Folic Acid occurs as a yellow or yellowish-orange crystalline powder and is very slightly soluble in water and insoluble in alcohol. Aqueous solutions of Folic Acid are heat sensitive and rapidly decompose in the presence of light and/or riboflavin; solutions should be stored in a cool place protected from light. Folic Acid is effective in the treatment of megaloblastic anemias due to a deficiency of Folic Acid (as may be seen in tropical or nontropical sprue) and in anemia of nutritional origin, pregnancy, infancy, or childhood. Folic Acid is relatively nontoxic in man. Rare instances of allergic responses to Folic Acid preparations have been reported and have included erythema, skin rash, itching, general malaise, and respiratory difficulty due to bronchospasm. Endocyte is developing an intravenous (IV) formulation of folic acid, called Neocepri®, which is intended for the diagnosis of positive folate receptor-positive status in patients with ovarian cancer when administered prior to the radioactive medicine, technetium Tc99m Etarfolatide. The benefits of Neocepri® are its ability to reduce the background activity observed on single photon emission computed tomography (SPECT) imaging in most normal, nontarget tissues (e.g. intestines, liver, kidney, spleen), thereby improving the image quality of the scans. The product had been granted orphan drug designation in the EU. Endocyte had filed a conditional marketing authorization application (CMA) with the European Medicines Agency (EMA) for Neocepri®.