U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 35 results

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Emtricitabine (minus enantiomer) is a synthetic nucleoside analog of cytosine with activity against HIV-1. It’s more active and significantly less toxic than the (+) enantiomer.
mixture
Status:
Possibly Marketed Outside US
Source:
Octaplasma by Octapharma Pharmazeutika Produktionsges M B H [Canada]
Source URL:

Class:
MIXTURE

Emtricitabine was discovered by Emory researchers Dr. Dennis C. Liotta, Dr. Raymond F. Schinazi and Dr. Woo-Baeg Choi and licensed to Triangle Pharmaceuticals by Emory University in 1996. Triangle was acquired by Gilead in 2003. Emtricitabine, marketed by Gilead as Emtriva, was first approved by the U.S. Food and Drug Administration in July 2003 for the treatment of HIV infection in combination with other antiretroviral agents. Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination.
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).

Showing 21 - 30 of 35 results