{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
deoxycholic acid
to a specific field?
Status:
US Approved Rx
(2019)
Source:
ANDA207609
(2019)
Source URL:
First approved in 1998
Source:
NDA020583
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2018)
Source:
NDA208255
(2018)
Source URL:
First approved in 1998
Source:
SUSTIVA by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Efavirenz (brand names Sustiva® and Stocrin®) is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and is used as part of highly active antiretroviral therapy (HAART) for the treatment of a human immunodeficiency virus (HIV) type 1. For HIV infection that has not previously been treated, efavirenz and lamivudine in combination with zidovudine or tenofovir is the preferred NNRTI-based regimen. Efavirenz is also used in combination with other antiretroviral agents as part of an expanded postexposure prophylaxis regimen to prevent HIV transmission for those exposed to materials associated with a high risk for HIV transmission.
Status:
US Approved Rx
(2000)
Source:
NDA021228
(2000)
Source URL:
First approved in 1998
Source:
NDA020771
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tolterodine is competitive muscarinic receptors M3 and M2 antagonist. It was sold under trade names detrol for the treatment of overactive bladder with symptoms of urge urinary incontinence. Both urinary bladder contraction and salivation are mediated via cholinergic muscarinic receptors. After oral administration, tolterodine is metabolized in the liver, resulting in the formation of the 5-hydroxymethyl derivative, a major pharmacologically active metabolite. The 5-hydroxymethyl metabolite, which exhibits an antimuscarinic activity similar to that of tolterodine, contributes significantly to the therapeutic effect. Both tolterodine and the 5-hydroxymethyl metabolite exhibit a high specificity for muscarinic receptors, since both show negligible activity and affinity for other neurotransmitter receptors and other potential cellular targets, such as calcium channels. Tolterodine has a pronounced effect on bladder function. The main effects of tolterodine at 1 and 5 hours were an increase in residual urine, reflecting an incomplete emptying of the bladder, and a decrease in detrusor pressure. These findings are consistent with an antimuscarinic action on the lower urinary tract.
Status:
US Approved Rx
(2020)
Source:
ANDA209677
(2020)
Source URL:
First approved in 1998
Source:
NDA020905
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Leflunomide is a pyrimidine synthesis inhibitor belonging to the DMARD (disease-modifying antirheumatic drug) class of drugs, which are chemically and pharmacologically very heterogeneous. Leflunomide was approved by FDA and in many other countries. Leflunomide is an isoxazole immunomodulatory agent that inhibits dihydroorotate dehydrogenase (a mitochondrial enzyme involved in de novo pyrimidine synthesis) and has antiproliferative activity. Several in vivo and in vitro experimental models have demonstrated an anti-inflammatory effect. Leflunomide is rapidly metabolized to its active form, teriflunomide (A77 1726). Two mechanisms of action have been identified for A77 1726: inhibition of dihydroorotate dehydrogenase (DHODH) and inhibition of tyrosine kinases. DHODH inhibition occurs at lower concentrations of A77 1726 than that of tyrosine kinases and is currently considered the major mode of action. Human dihydroorotate dehydrogenase consists of 2 domains: an α/β-barrel domain containing the active site and an α-helical domain that forms a tunnel leading to the active site. A77 1726 binds to the hydrophobic tunnel at a site near the flavin mononucleotide. Inhibition of dihydroorotate dehydrogenase by A77 1726 prevents production of rUMP by the de novo pathway; such inhibition leads to decreased rUMP levels, decreased DNA and RNA synthesis, inhibition of cell proliferation, and G1 cell cycle arrest. It is through this action that leflunomide inhibits autoimmune T-cell proliferation and production of autoantibodies by B cells. Since salvage pathways are expected to sustain cells arrested in the G1 phase, the activity of leflunomide is cytostatic rather than cytotoxic. Tyrosine kinases activate signalling pathways leading to DNA repair, apoptosis and cell proliferation. Inhibition of tyrosine kinases can help to treating cancer by preventing repair of tumor cells. Teriflunomide is also an inhibitor of CYP2C8 in vivo. In patients taking leflunomide, exposure of drugs metabolized by CYP2C8 (e.g., paclitaxel, pioglitazone, repaglinide, rosiglitazone) may be increased. Teriflunomide inhibits the activity of BCRP and OATP1B1/1B3 in vivo. For a patient taking leflunomide, the dose of rosuvastatin should not exceed 10 mg once daily. For other substrates of BCRP (e.g., mitoxantrone) and drugs in the OATP family (e.g., methotrexate, rifampin), especially HMG-Co reductase inhibitors (e.g., atorvastatin, nateglinide, pravastatin, repaglinide, and simvastatin), consider reducing the dose of these drugs and monitor patients closely for signs and symptoms of increased exposures to the drugs while patients are taking leflunomide.
Status:
US Approved Rx
(2017)
Source:
ANDA208605
(2017)
Source URL:
First approved in 1998
Source:
NDA020850
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Telmisartan is an orally active nonpeptide angiotensin II antagonist that acts on the AT1 receptor subtype. It was discovered by Boehringer Ingelheim and launched in 1999 as Micardis. It has the highest affinity for the AT1 receptor among commercially available ARBS and has minimal affinity for the AT2 receptor. New studies suggest that telmisartan may also have PPARγ agonistic properties that could potentially confer beneficial metabolic effects, as PPARγ is a nuclear receptor that regulates specific gene transcription, and whose target genes are involved in the regulation of glucose and lipid metabolism, as well as anti-inflammatory responses. This observation is currently being explored in clinical trials. Angiotensin II is formed from angiotensin I in a reaction catalyzed by angiotensin-converting enzyme (ACE, kininase II). Angiotensin II is the principal pressor agent of the renin-angiotensin system, with effects that include vasoconstriction, stimulation of synthesis and release of aldosterone, cardiac stimulation, and renal reabsorption of sodium. Telmisartan works by blocking the vasoconstrictor and aldosterone secretory effects of angiotensin II. Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels. Studies also suggest that telmisartan is a partial agonist of PPARγ, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full PPARγ activators. Used alone or in combination with other classes of antihypertensives for the treatment of hypertension. Telmisartan is used in the treatment of diabetic nephropathy in hypertensive patients with type 2 diabetes mellitus, as well as the treatment of congestive heart failure (only in patients who cannot tolerate ACE inhibitors).
Status:
US Approved Rx
(2012)
Source:
ANDA200043
(2012)
Source URL:
First approved in 1998
Source:
NDA020717
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Armodafinil is the R-enantiomer of modafinil, a wake-promoting agent, that primarily affects areas of the brain involved in controlling wakefulness. Armodafinil is an indirect dopamine receptor agonist; both armodafinil and modafinil bind in vitro to the dopamine transporter and inhibit dopamine reuptake. Armodafinil tablets are indicated to improve wakefulness in adult patients with excessive sleepiness associated with obstructive sleep apnea (OSA), narcolepsy, or shift work disorder (SWD). Once-daily armodafinil was generally well tolerated in adult patients with excessive sleepiness associated with OSA (despite treatment of the underlying condition), narcolepsy or SWSD.
Status:
US Approved Rx
(2014)
Source:
ANDA204165
(2014)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2011)
Source:
ANDA077555
(2011)
Source URL:
First approved in 1997
Source:
NDA020646
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Tiagabine (trade name Gabitril) is an anticonvulsant medication used in the treatment of Partial Seizures. The precise mechanism by which Tiagabine exerts its antiseizure effect is unknown, although it is believed to be related to its ability to enhance the activity of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Tiagabine binds to recognition sites associated with the GABA uptake carrier. It is thought that, by this action, Tiagabine blocks GABA uptake into presynaptic neurons, permitting more GABA to be available for receptor binding on the surfaces of post-synaptic cells. Tiagabine is approved by U.S. Food and Drug Administration (FDA) as an adjunctive treatment for partial seizures in individuals of age 12 and up. It may also be prescribed off-label by physicians to treat anxiety disorders and panic disorder as well as neuropathic pain (including fibromyalgia). For anxiety and neuropathic pain, tiagabine is used primarily to augment other treatments. Tiagabine may be used alongside selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, or benzodiazepines for anxiety, or antidepressants, gabapentin, other anticonvulsants, or opioids for neuropathic pain. The most common side effect of tiagabine is dizziness. Other side effects that have been observed with a rate of statistical significance relative to placebo include asthenia, somnolence, nervousness, memory impairment, tremor, headache, diarrhea, and depression.
Status:
US Approved Rx
(2019)
Source:
NDA211882
(2019)
Source URL:
First approved in 1997
Source:
NDA020600
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Tazarotene a novel acetylenic retinoid is known to be effective in the topical treatment of psoriasis and acne. Tazarotene is rapidly and completely metabolized to its active metabolite tazarotenic acid. The exact mechanism of action of tazarotenic acid in the treatment of psoriasis and acne is not clearly defined. However, it is thought that the selective interaction of tazarotenic acid with the retinoic acid receptor (RAR) family (RARα, RARβ, and RARγ) and the subsequent induction of both positive and negative gene regulatory effects may be involved.
Status:
US Approved Rx
(2013)
Source:
ANDA202433
(2013)
Source URL:
First approved in 1997
Source:
NDA020579
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Tamsulosin, a sulfamoylphenethylamine-derivative alpha-adrenoceptor blocker with enhanced specificity for the alpha-adrenoceptors of the prostate, is commonly used to treat benign prostatic hyperplasia (BPH). The drug is commercially available in a racemic mixture of 2 isomers, and is pharmacologically related to doxazocin, prazosin, and terazosin. However, unlike these drugs, tamsulosin has a higher affinity for the alpha-1A- adrenergic receptors, which are located in vascular smooth muscle. Studies show that tamsulosin has about 12 times greater affinity for alpha-1 adrenergic receptors in the prostate than those in the aorta, which may result in a reduced incidence of adverse cardiovascular effects. Tamsulosin is sold under the trade name Flomax.