{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "SUBCHAPTER E--ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS" in comments (approximate match)
Status:
US Previously Marketed
Source:
HETRAZAN by LEDERLE
(1950)
Source URL:
First approved in 1950
Source:
HETRAZAN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
US Previously Marketed
Source:
PIPERAZINE CITRATE by LUITPOLD
(1982)
Source URL:
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
US Previously Marketed
Source:
CHLOROMYCETIN HYDROCORTISONE by PARKEDALE
(1953)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Previously Marketed
Source:
PIPERAZINE CITRATE by LUITPOLD
(1982)
Source URL:
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
US Previously Marketed
Source:
PIPERAZINE CITRATE by LUITPOLD
(1982)
Source URL:
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Caramiphen is a muscarinic M1 acetylcholine receptor antagonist, which was used for the treatment of Parkinson Disease and cough, but then there using were discontinued. Caramiphen is also used in local anesthesia, and effect could be achieved through the suppression of voltage-gated Na⁺ currents.
Status:
US Previously Marketed
Source:
KECTIL DIHYDROSTREPTOMYCIN SULFATE by BRISTOL LABS
(1961)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dihydrostreptomycin is an antibiotic compound derived from streptomycin by reduction with hydrogen. The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins, in addition it binds mechanosensitive channel of large conductance (MscL) and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. It has about the same degree of antibacterial activity as streptomycin, but it is less effective against some gram-negative microorganisms. Because it has a higher risk of irreversible deafness, and its effectiveness is no greater that that of streptomycin, dihydrostreptomycin is no longer used clinically. To date dihydrostreptomycin is approved for veterinary use to treat bacterial infections.
Status:
US Previously Marketed
Source:
KECTIL DIHYDROSTREPTOMYCIN SULFATE by BRISTOL LABS
(1961)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dihydrostreptomycin is an antibiotic compound derived from streptomycin by reduction with hydrogen. The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins, in addition it binds mechanosensitive channel of large conductance (MscL) and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. It has about the same degree of antibacterial activity as streptomycin, but it is less effective against some gram-negative microorganisms. Because it has a higher risk of irreversible deafness, and its effectiveness is no greater that that of streptomycin, dihydrostreptomycin is no longer used clinically. To date dihydrostreptomycin is approved for veterinary use to treat bacterial infections.
Status:
US Previously Marketed
Source:
SULFALOID by FOREST PHARMS
(1982)
Source URL:
First approved in 1947
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfamethazine is a sulfonamide used to treat a variety of bacterial diseases in animals. It inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA) for binding to dihydropteroate synthetase (dihydrofolate synthetase).
Status:
US Previously Marketed
Source:
DIETHYLSTILBESTROL by LILLY
(1982)
Source URL:
First approved in 1941
Source:
STILBESTROL by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diethylstilbestrol is a synthetic non-steroidal estrogen. It is used in the treatment of menopausal and postmenopausal disorders, prostate cancer and in the prevention of miscarriage or premature delivery in pregnant women prone to miscarriage or premature delivery. Diethylstilbestrol is a very potent full agonist of the estrogen receptors. At the cellular level, estrogens increase the synthesis of DNA, RNA, and various proteins in target tissues. Pituitary mass is also increased. Estrogens reduce the release of gonadotropin-releasing hormone from the hypothalamus, leading to a reduction in release of follicle-stimulating hormone and luteinizing hormone from the pituitary. Adverse effects are: breast pain or tenderness, enlargement of breasts, gynecomastia, peripheral edema and others. Estrogens may interfere with the effects of bromocriptine. Dosage adjustment may be needed. Concurrent use with estrogens may alter the metabolism and protein binding of the glucocorticoids, leading to decreased clearance, increased elimination half-life, and increased therapeutic and toxic effects of the glucocorticoids.