U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 2351 - 2360 of 2364 results

Status:
Possibly Marketed Outside US
Source:
Japan:Bevantolol Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Bevantolol (INN) was a drug candidate for angina and hypertension that acted as both a beta blocker and a calcium channel blocker. Animal experiments confirm both agonist and antagonist effects on alpha-receptors, in addition to antagonist activity at beta-1 receptors. By binding and antagonizing beta-1 receptors Bevantolol inhibits the normal normal epinephrine-mediated sympathetic actions such as increased heart rate. This has the effect of decreasing preload and blood pressure. Bevantolol was discovered and developed by Warner-Lambert but in January 1989 the company announced that it had withdrawn the New Drug Application. As of 2016 it wasn't marketed in the US, UK, or Europe.
Status:
Possibly Marketed Outside US
Source:
Japan:Etilefrine Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Etilefrine is a cardiac stimulant used as an antihypotensive. Intravenous infusion of this compound increases cardiac output, stroke volume, venous return and blood pressure in man and experimental animals, suggesting stimulation of both α and β adrenergic receptors. However, in vitro studies indicate that etilefrine has a much higher affinity for β1 (cardiac) than for β2 adrenoreceptors. Intravenous etilefrine increases the pulse rate, cardiac output, stroke volume, central venous pressure and mean arterial pressure of healthy individuals. Marked falls in pulse rate, cardiac output, stroke volume and peripheral bloodflow, accompanied by rises in mean arterial pressure, occur when etilefrine is infused after administration of intravenous propranolol 2,5 mg. These findings indicate that etilefrine has both β1 and α1 adrenergic effects in man. The French Health Products Agency concluded that etilefrine and heptaminol have an unfavourable harm-benefit balance, and also placed restrictions on the use of midodrine.
Linaclotide (marketed under the trade name Linzess and Constella) is a peptide agonist of the guanylate cyclase 2C (GC-C). Once linaclotide and its active metabolite binds to GC-C, it has local effect on the luminal surface of the intestinal epithelium. Activation of GC-C by linaclotide results in the intra- and extracellular increase of cyclic guanosine monophosphate concentrations (cGMP). This elevation of cGMP levels stimulates the secretion of chloride and bicarbonate into the intestinal lumen via activation of cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. The metabolite of linaclotide MM-419447 (CCEYCCNPACTGC) contributes to the pharmacologic effects of linaclotide. Ultimately, linaclotide helps patients with IBS (especially with constipation) as GI transit is accelerated and the release of intestinal fluid is increased. In animal models, a decrease in visceral pain after administration of linaclotide may be observed. A decrease in the activity of pain-sensing nerves occurs as a result of an increase in extracellular cGMP. It was approved by the FDA in August 2012 for the treatment of chronic idiopathic constipation and irritable bowel syndrome with constipation (IBS-C) in adults.
Ziconotide (PRIALT; SNX-111) is a neuroactive peptide, which was approved by FDA in 2004 for the management of severe chronic pain in adult patients for whom intrathecal therapy is warranted, and who are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies, or intrathecal morphine. Ziconotide acts as a selective N-type voltage-gated calcium channel blocker, which leads to a blockade of excitatory neurotransmitter release from the primary afferent nerve terminals.
nucleic acid
Status:
Investigational
Source:
NCT02580552: Phase 1 Interventional Completed Cutaneous T-cell Lymphoma (CTCL)
(2016)
Source URL:

Class:
NUCLEIC ACID

nucleic acid
Status:
Investigational
Source:
INN:zilebesiran [INN]
Source URL:

Class:
NUCLEIC ACID

nucleic acid
Status:
Investigational
Source:
INN:elsunersen [INN]
Source URL:

Class:
NUCLEIC ACID

nucleic acid
Status:
Investigational
Source:
INN:zorevunersen [INN]
Source URL:

Class:
NUCLEIC ACID

Status:
Investigational
Source:
NCT01621243: Phase 1/Phase 2 Interventional Terminated Metastatic Pancreatic Cancer
(2012)
Source URL:

Class:
POLYMER

Showing 2351 - 2360 of 2364 results