{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
guanidine
to a specific field?
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Iobenguane, mainly use as a radiopharmaceutical, used in a scintigraphy method called MIBG scan. Synthetic guanethidine derivative that locates phaeochromocytomas and neuroblastomas. The radioisotope used can either be iodine-123 for imaging or iodine-131 for destruction of tissues that metabolize noradrenaline. Iodine 123 is a cyclotron-produced radionuclide that decays to Te 123 by electron capture. Images are produced by a I123 MIBG scintigraphy. It localizes to adrenergic tissue and thus can be used to identify the location of tumors such as pheochromocytomas and neuroblastomas. With I-131 it can also be used to eradicate tumor cells that take up and metabolize norepinephrine. The radioactive iodine component is responsible for its imaging properties. Iobenguane and guanethidine are substrates for the norepinephrine transporter (NET) and accumulate by the uptake mechanism into presynaptic nerve endings. Unlike norepinephrine, these drugs are protonated under physiologic conditions; therefore, they do not cross the blood–brain barrier and in vivo uptake is limited primarily to systemic neuronal tissue. The accumulation of iobenguane in myocardial tissue is also dictated by the high fraction of aortic blood flow that enters the coronary arteries. This physiology constitutes an ideal molecular targeting mechanism for diagnosis of various cardiac diseases, including heart failure, heart transplant rejection, ischemic heart disease, dysautonomia, and drug-induced cardiotoxicity, as well as cardiac neuropathy related to diabetes mellitus and Parkinson disease
Status:
Possibly Marketed Outside US
Source:
Vatensol by Pfizer
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Guanoclor is an anti-hypertensive agent developed by
Pfizer Ltd. (U.K.). It seems to be effective in various types of hypertension
(unknown aetiology, renal, and malignant). It affects both
systolic blood-pressure and diastolic blood-pressure. It is an
adrenergic neurone-blocking agent, which also interferes with
noradrenaline synthesis by inhibition of the enzyme dopamine
beta-hydroxylase. Clinical use of the compound was first
reported by Lawrie et al. (1964), who achieved satisfactory
blood-pressure control in 60% of their cases with guanoclor
alone, and in a further 18% with the addition of a thiazide
diuretic. They also noted a significant reduction in urinary
noradrenaline levels during guanoclor administration. Guanochlor has an affinity for the Na+/H+ exchanger ranging between 0.5 uM and 6 uM in different systems and is more potent than amiloride in all systems studied. It is suggested that guanochlor recognizes a binding site on the Na+/H+ exchanger that is distinct from the amiloride binding site.
Status:
Possibly Marketed Outside US
Source:
Benezrial by Houde [France]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Guanoxabenz is an antihypertensive drug that was in clinical use in the 1980s. It acts as a selective agonist of alpha2A1 and alpha2B1 adrenergic receptors. Guanoxabenz is the main metabolite of the FDA-approved drug guanabenz.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Picloxydine is a heterocyclic biguanide with antibacterial and antiplaque activity. 0.4% Picloxydine produces a highly significant drop in the number of aerobic organisms. 0.4% Picloxydine is far more effective than 0.2% Picloxydine or chlorhexidine in reducing the total viable count of oral aerobic and anaerobic organisms. It is used to treat superficial eye infections. Picloxydine is also used in eye drops in the topical therapy of trachoma. This drug can cause side effects - local intolerance reactions (temporary irritation, allergic reactions).
Status:
Withdrawn
Source:
Furaguanidin
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Furaguanidine (guanofuracin) is a derivative of nitrofuran. It was formerly used as an anti-infective agent, for the treatment of bacillary dysentery, enteritis, and other intestinal infections, and topically to treat skin and mucous membrane infections. The compound was shown to irreversibly inactivate the trypanothione reductase from Trypanosoma cruzi in anaerobic conditions.
Status:
Other
Class:
MIXTURE
Status:
Other
Class:
MIXTURE