{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for haloperidol root_names_name in Any Name (approximate match)
Status:
US Previously Marketed
Source:
ZAGAM by MYLAN
(1996)
Source URL:
First approved in 1996
Source:
ZAGAM by MYLAN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Sparfloxacin is a synthetic fluoroquinolone broad-spectrum antimicrobial agent in the same class as ofloxacin and norfloxacin. Sparfloxacin has in vitro activity against a wide range of gram-negative and gram-positive microorganisms. Sparfloxacin exerts its antibacterial activity by inhibiting DNA gyrase, a bacterial topoisomerase. DNA gyrase is an essential enzyme which controls DNA topology and assists in DNA replication, repair, deactivation, and transcription. Quinolones differ in chemical structure and mode of action from (beta)-lactam antibiotics. Quinolones may, therefore, be active against bacteria resistant to (beta)-lactam antibiotics. Although cross-resistance has been observed between sparfloxacin and other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to sparfloxacin. In vitro tests show that the combination of sparfloxacin and rifampin is antagonistic against Staphylococcus aureus. The bactericidal action of sparfloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, and recombination. Sparfloxacin is used for the treatment of adults with the following infections caused by susceptible strains microorganisms: community-acquired pneumonia (caused by Chlamydia pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella catarrhalis, Mycoplasma pneumoniae, or Streptococcus pneumoniae) and acute bacterial exacerbations of chronic bronchitis (caused by Chlamydia pneumoniae, Enterobacter cloacae, Haemophilus influenzae, Haemophilus parainfluenzae, Klebsiella pneumoniae, Moraxella catarrhalis,Staphylococcus aureus, or Streptococcus pneumoniae). Sparfloxacin has trade names Spacin in Bangladesh, Zagam and Zagam Respipac. Zagam is no longer available in the United States.
Status:
US Previously Marketed
Source:
CHIBROXIN by MERCK
(1991)
Source URL:
First approved in 1986
Source:
NOROXIN by MERCK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Norfloxacin is an antibacterial agent, It inhibits inhibits DNA synthesis by inhibiting DNA gyrase enzyme. Norfloxacin was approved in 1986 for treatment of urinary tract infections, gynecological infections, prostatitis, gonorhhea and bladder infections. In ophtalmology, norfloxacin is used for treatment of conjunctivitus.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
US Previously Marketed
First approved in 1959
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Isoxsuprine (used as isoxsuprine hydrochloride) is a drug used as a vasodilator in humans (under the trade name Duvadilan) and equines. Isoxsuprine is a β2 adrenoreceptor agonist that causes direct relaxation of uterine and vascular smooth muscle via β2 receptors. Isoxsuprine it is used in humans for treatment of premature labor, i.e. a tocolytic, and as a vasodilator for the treatment of cerebral vascular insufficiency, Raynaud's phenomenon, and other conditions. Isoxsuprine may increase the heart rate, cause changes in blood pressure, and irritate the GI tract. It should, therefore, be used with caution if combined with other drugs that affect blood pressure, such as sedatives and anesthetic drugs. Isoxsuprine is most commonly used to treat hoof-related problems in the horse, most commonly for laminitis and navicular disease, as its effects as a vasodilator are thought to increase circulation within the hoof to help counteract the problems associated with these conditions.
Status:
US Previously Marketed
Source:
AKINETON by ABBVIE
(1959)
Source URL:
First approved in 1959
Source:
AKINETON by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Biperiden, sold under the brandname Akineton was used as an adjunct in the therapy of all forms of parkinsonism (postencephalitic, arteriosclerotic and idiopathic). Was also useful in the control of extrapyramidal disorders due to central nervous system drugs such as phenothiazines and other groups of psychotropics. Biperiden is a weak peripheral anticholinergic agent. It has, therefore, some antisecretory, antispasmodic and mydriatic effects. In addition, biperiden possesses nicotinolytic activity. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as biperiden is considered to relate to competitive antagonism of acetylcholine at cholinergic receptors in the corpus striatum, which then restores the balance. Atropine-like side effects such as dry mouth; blurred vision; drowsiness; euphoria or disorientation; urinary retention; postural hypotension; constipation; agitation; disturbed behavior may been seen. Only limited pharmacokinetic studies of biperiden in humans are available.
Status:
US Previously Marketed
Source:
STRONTOLAC by WYETH
(1952)
Source URL:
First approved in 1952
Source:
STRONTOLAC by WYETH
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
US Previously Marketed
Source:
Silver Oxide U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.
Status:
US Previously Marketed
Source:
Silver Oxide U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.
Status:
Possibly Marketed Outside US
Source:
21 CFR 347
(2016)
Source URL:
First approved in 2016
Source:
21 CFR 347
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lactic acid, D- is a natural optical isomer of lactic acid. It is a poorly utilized isomer – 30 to 40% of the dose ingested is excreted in the urine. Lactic acid, D- is known to be harmful to human metabolism and it can result in acidosis and decalcification. D-lactic acidosis, also referred as D-lactate encephalopathy, has been reported in patients with short bowl syndrome. Lactic acid, D- is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.
Status:
Possibly Marketed Outside US
Source:
21 CFR 347
(2016)
Source URL:
First approved in 2016
Source:
21 CFR 347
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lactic acid, D- is a natural optical isomer of lactic acid. It is a poorly utilized isomer – 30 to 40% of the dose ingested is excreted in the urine. Lactic acid, D- is known to be harmful to human metabolism and it can result in acidosis and decalcification. D-lactic acidosis, also referred as D-lactate encephalopathy, has been reported in patients with short bowl syndrome. Lactic acid, D- is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.