{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for phenylephrine in Related Substance Name (approximate match)
Status:
First approved in 1950
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Cyclamic acid (Cyclamate) is banned in the United States but it is used in many other Western countries without safety concerns. Cyclamate interacts with the sweet taste receptor subunit T1R3 transmembrane domain. Initially it was recommended for use in treatment of obese patients and by individuals with diabetes but in August 27, 1970 FDA concluded that there was no substantial evidence of effectiveness of cyclamate compounds at any level for treatment of obese patients and individuals with diabetes and therefore prohibited continued sale of cyclamate containing products with drug labeling. cyclamate is the putative carcinogenic agent. Cyclamate was tested in the Maximal Electroshock Seizure model (mice, ip), showing moderate anticonvulsant activity.
Status:
US Previously Marketed
Source:
TRIPLE SULFA by FOUGERA
(1985)
Source URL:
First approved in 1940
Source:
Sulfathiazole by Winthrop
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sulfathiazole is a short-acting sulfonamide with properties similar to those of sulfamethoxazole. It is now rarely used systemically due to its toxicity. Sulfathiazole is used with other sulfonamides, usually sulfabenzamide and sulfacetamide, in preparations for the topical treatment of vaginal infections and is also used with other drugs in the treatment of skin infections. Sulfathiazole sodium has been applied topically with other drugs in the treatment of eye infections. Sulfathiazole interferes with nucleic acid synthesis in microorganisms by blocking the conversion of p-aminobenzoic acid to the coenzyme dihydrofolic acid.It has properties similar to sulfamethoxazole.
Status:
Possibly Marketed Outside US
Source:
M012
(2023)
Source URL:
First approved in 2023
Source:
M012
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
Possibly Marketed Outside US
First approved in 1990
Source:
21 CFR 358A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Palmitic acid is a saturated fatty acid, the principal constituent of refined palm oil, present in the diet and synthesized endogenously. Palmitic acid is able to activate the orphan G protein-coupled receptor GPR40. Palmitic acid was also a weak ligand of peroxisome proliferator-activated receptor gamma. Palmitic acid is a ligand of lipid chaperones - the fatty acid-binding proteins (FABPs). Dietary palm oil and palmitic acid may play a role in the development of obesity, type 2 diabetes mellitus, cardiovascular diseases and cancer.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Norfenefrine or meta-octopamine, also known as 3,β-dihydroxyphenethylamine, is an adrenergic agent used as a sympathomimetic drug which is marketed in Europe, Japan, and Mexico. Along with its structural isomer p-octopamine and the tyramines, norfenefrine is a naturally occurring, endogenous trace amine and plays a role as a minor neurotransmitter in the brain. Norfenefrine controls blood pressure in acute hypotensive states eg pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesth, MI, septicemia, blood transfusion and drug reactions. Adjunct in treatment of cardiac arrest and hypotension.
Status:
Possibly Marketed Outside US
Source:
Octaplasma by Octapharma Pharmazeutika Produktionsges M B H [Canada]
Source URL:
First approved in 2013
Source:
BLA125416
Source URL:
Class:
MIXTURE
Status:
US Approved OTC
Source:
21 CFR 349.18(c) ophthalmic:vasoconstrictor phenylephrine hydrochloride (0.08 to 0.2%)
Source URL:
First marketed in 1934
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Phenylephrine is a powerful vasoconstrictor. It is used as a nasal decongestant and cardiotonic agent. Phenylephrine is a postsynaptic α1-receptor agonist with little effect on β-receptors of the heart. Parenteral administration of phenylephrine causes a rise in systolic and diastolic pressures, a slight decrease in cardiac output, and a considerable increase in peripheral resistance; most vascular beds are constricted, and renal, splanchnic, cutaneous, and limb blood flows are reduced while coronary blood flow is increased. Phenelephrine also causes pulmonary vessel constriction and subsequent increase in pulmonary arterial pressure. Vasoconstriction in the mucosa of the respiratory tract leads to decreased edema and increased drainage of sinus cavities. In general, α1-adrenergic receptors mediate contraction and hypertrophic growth of smooth muscle cells. α1-receptors are 7-transmembrane domain receptors coupled to G proteins, Gq/11. Three α1-receptor subtypes, which share approximately 75% homology in their transmembrane domains, have been identified: α1A (chromosome 8), α1B (chromosome 5), and α1D (chromosome 20). Phenylephrine appears to act similarly on all three receptor subtypes. All three receptor subtypes appear to be involved in maintaining vascular tone. The α1A-receptor maintains basal vascular tone while the α1B-receptor mediates the vasocontrictory effects of exogenous α1-agonists. Activation of the α1-receptor activates Gq-proteins, which results in intracellular stimulation of phospholipases C, A2, and D. This results in mobilization of Ca2+ from intracellular stores, activation of mitogen-activated kinase and PI3 kinase pathways and subsequent vasoconstriction. Phenylephrine produces its local and systemic actions by acting on α1-adrenergic receptors peripheral vascular smooth muscle. Stimulation of the α1-adrenergic receptors results in contraction arteriolar smooth muscle in the periphery. Phenylephrine decreases nasal congestion by acting on α1-adrenergic receptors in the arterioles of the nasal mucosa to produce constriction; this leads to decreased edema and increased drainage of the sinus cavities. Phenylephrine is mainly used to treat nasal congestion, but may also be useful in treating hypotension and shock, hypotension during spinal anaesthesia, prolongation of spinal anaesthesia, paroxysmal supraventricular tachycardia, symptomatic relief of external or internal hemorrhoids, and to increase blood pressure as an aid in the diagnosis of heart murmurs.