U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 141 - 150 of 1033 results

Status:
Investigational
Source:
INN:oxidopamine
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Oxidopamine (6-Hydroxydopamine) is an antagonist of the neurotransmitter dopamine with potential antineoplastic activity. 6-Hydroxydopamine (6-HOD) can be taken up by selective adrenergic terminals, thereby causing acute degeneration of adrenergic terminals that leads to depletion of norepinephrine, and of dopamine in the dopamine-sensitive sites. This agent is auto-oxidated at physiological pH that leads to the formation of reactive free radicals, thereby leading to cytotoxicity in neural cells. 6-Hydroxydopamine is often used to induce CNS and sympathetic neural lesions that model aging and various nervous disorders in animal systems. The growth of C-1300 neuroblastoma was markedly slowed in 6-hydroxydopamine-treated mice. The growth of the A-10 breast adenocarcinoma was also significantly retarded in 6-hydroxydopamine-treated mice but the growth of B-16 melanoma was not affected.
Status:
Investigational
Source:
JAN:PERAZINE FENDIZOATE [JAN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
INN:gevotroline [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Gevotroline (WY 47,384) is an atypical antipsychotic compound, which was developed for use in the treatment of schizophrenia. Gevotroline has some clinical efficacy, and equal affinity for D2 (dopamine) and 5-HT2 (serotonin) receptors. Gevotroline was also found to have affinity for sigma receptors, which are thought to be involved in certain neuropsychiatric disorders (because of their ability to regulate the hypothalamic-pituitary-adrenal axis), explaining the interest in this compound for therapeutic use in schizophrenia. Gevoltrine is thought to increase activity in the hypothalamic-pituitary-adrenal axis to elevate levels of corticosterone in plasma. Gevotroline is well tolerated and phase II clinical trials have been conducted, but the compound was never marketed.
Status:
Investigational
Source:
INN:imidoline [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

There is no much available information related to the biological and pharmacological application of imidoline, but this compound has been found to be as potent as chlorpromazine in increasing striatal DOPA accumulation and prolactin secretion in vivo. Imidoline exhibited only weak inhibitory activity towards dopamine-sensitive adenylate cyclase and 3H-spiroperidol binding to striatal membranes in vitro. A proposed active conformation involves intramolecular hydrogen bonding between the protonated dimethylamino group and the oxygen of the imidazolidinone ring. The spatial relationship between the amine nitrogen and phenyl ring in this conformation allows proper fit of imidoline with key dimensions described for the dopamine receptor.
Status:
Investigational
Source:
INN:mazapertine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Mazapertine (RWJ-37796) is an arylpiperazine antipsychotic with high affinity to dopamine D2 and D3, serotonin 5-HT1A and alpha 1A-adrenergic receptors. It was being studied in the treatment of schizophrenia.
Fonturacetam, also known as Phenylpiracetam, is marketed in Russia as Carphedon and Phenotropil. It is one of the first ever nootropic drugs and originally discovered in Russia. Fonturacetam acts on most neurotransmitter systems and has been used for its cognitive and physical enhancing properties, and also as an antidepressant.
Status:
Investigational
Source:
INN:halonamine [INN]
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Halonamine was studied as an antiparkinsonian agent.
Status:
Investigational
Source:
INN:quinpirole [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Quinpirole (LY 171,555) is a psychoactive drug and research chemical which acts as a selective D2 and D3 receptor agonist. Quinpirole is the most widely used D2 agonist in in vivo and in vitro studies. Specific quinpirole binding in rat brain was saturable, and dependent on temperature, membrane concentration, sodium concentration and guanine nucleotides. Saturation analysis revealed high affinity binding characteristics (KD = 2.3 nM) which were confirmed by association-dissociation kinetics. The regional distribution of [3H]quinpirole binding sites roughly paralleled the distribution of [3H]spiperone binding sites, with greatest densities present in the striatum, nucleus accumbens and olfactory tubercles. A variety of drugs, most notably monoamine oxidase inhibitors (MAOls), inhibit the binding of [3H]quinpirole, but not [3H]spiperone or [3H](-)N-n-Propylnorapomorphine, in rat striatal membranes by a mechanism that does not appear to involve the enzymatic activity of MAO. Clinically antidepressant MAOIs exhibited selectivity between sites labeled by [3H]quinpirole and [3H]spiperone as did a number of structurally related propargylamines and N-acylethylenediamine derivatives and other drugs such as debrisoquin and phenylbiguanide. Quinpirole has been shown to increase locomotion and sniffing behavior in mice and induces compulsive behavior symptomatic of obsessive compulsive disorder in rats.
Status:
Investigational
Source:
INN:lergotrile
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Lergotrile is an ergot alkaloid clinically effective in the treatment of Parkinson’s disease. The in vivo dopaminergic effects of lergotrile are similar to those produced by the direct acting dopaminergic agonists apomorphine or L-DOPA. Like apomorphine or L-DOPA, lergotrile decreases prolactin secretion, produces stereotyped behavior in intact rats, and causes contralateral rotation in rats with uniIateral 6-hydroxydopamine lesions of substantia nigra. However, unlike apomorphine or L-DOPA, lergotrile does not activate dopamine sensitive adenylate cyclase in vitro. Side effects of lergotrile included exacerbation of hallucinations, dyskinesias, hypotension, and alterations in liver function tests. Although lergotrile, when added to levodopa, has a definite antiparkinsonian effect, the incidence of adverse effects, particularly hepatotoxicity, makes it unlikely that this ergot alkaloid will become widely available for the treatment of Parkinson’s disease.