{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Agent Affecting Nervous System[C78272]" in comments (approximate match)
Status:
US Approved Rx
(2021)
Source:
ANDA214609
(2021)
Source URL:
First approved in 1993
Source:
EFFEXOR by WYETH PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Venlafaxine is an arylalkanolamine serotonin-norepinephrine reuptake inhibitor, which is sold under several brand names; one of them is venlafaxine hydrochloride. Venlafaxine hydrochloride is a venlafaxine extended release tablets, which are indicated for the treatment of major depressive disorder (MDD). Efficacy of venlafaxine in MDD was shown in both short-term trials and a longer-term trial in MDD. A major depressive episode (DSM-IV) implies a prominent and relatively persistent depressed mood or the loss of interest or pleasure in nearly all activities, representing a change from previous functioning, and includes the presence of at least five of the following nine symptoms during the same two-week period. In addition, venlafaxine hydrochloride is indicated for the treatment of social anxiety (SAD), also known as social phobia. Social Anxiety Disorder (DSM-IV) is characterized by a marked and persistent fear of 1 or more social or performance situations in which others expose to unfamiliar people or to possible scrutiny the person. Exposure to the feared situation almost invariably provokes anxiety, which may approach the intensity of a panic attack. The feared situations are avoided or endured with intense anxiety or distress. The mechanism of the antidepressant action of venlafaxine in humans is believed to be associated with its potentiation of neurotransmitter activity in the CNS. Preclinical studies have shown that venlafaxine and its active metabolite, O-desmethylvenlafaxine (ODV), are potent inhibitors of neuronal serotonin and norepinephrine reuptake and weak inhibitors of dopamine reuptake.
Status:
US Approved Rx
(2009)
Source:
ANDA078629
(2009)
Source URL:
First approved in 1993
Source:
KYTRIL by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Granisetron is a selective inhibitor of type 3 serotonergic (5-HT3) receptors. The drug is structurally and pharmacologically related to ondansetron, another selective inhibitor of 5-HT3 receptors. The serontonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery, and centrally in the chemoreceptor trigger zone of the area postrema. The temporal relationship between the emetogenic action of emetogenic drugs and the release of serotonin, as well as the efficacy of antiemetic agents suggest that chemotherapeutic agents release serotonin from the enterochromaffin cells of the small intestine by causing degenerative changes in the GI tract. The serotonin then stimulates the vagal and splanchnic nerve receptors that project to the medullary vomiting center, as well as the 5-HT3 receptors in the area postrema, thus initiating the vomiting reflex, causing nausea and vomiting. Granisetron is a potent, selective antagonist of 5-HT3 receptors. The antiemetic activity of the drug is brought about through the inhibition of 5-HT3 receptors present both centrally (medullary chemoreceptor zone) and peripherally (GI tract). This inhibition of 5-HT3 receptors in turn inhibits the visceral afferent stimulation of the vomiting center, likely indirectly at the level of the area postrema, as well as through direct inhibition of serotonin activity within the area postrema and the chemoreceptor trigger zone. Granisetron is used for the prevention of nausea and vomiting associated with initial and repeat courses of emetogenic cancer therapy (including high dose cisplatin), postoperation, and radiation (including total body irradiation and daily fractionated abdominal radiation).
Status:
US Approved Rx
(2000)
Source:
NDA021129
(2000)
Source URL:
First approved in 1993
Source:
NDA020235
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Gabapentin enacarbil (Horizant in USA, Regnite in Japan), is a prodrug of gabapentin, an antiepileptic drug (AED). It was designed for increased oral bioavailability over gabapentin and to be transported through two high capacity transporters in the intestine, sodium-dependent multivitamin transporter (SMVT) and MCT1. It was shown that the prodrug is a substrate for both MCT1 and SMVT. The oral bioavailability of gabapentin following the administration of its prodrug was found to be 84.2% compared with 25.4% after a similar oral dose of gabapentin. Discovered and developed by XenoPort, gabapentin enacarbil was approved in the United States in 2011 for the treatment of moderate-to-severe primary restless legs syndrome (RLS) in adults and in June 2012 for the management of postherpetic neuralgia (PHN) in adults. Therapeutic effects of gabapentin enacarbil in RLS and PHN are attributable to gabapentin. The precise mechanism by which gabapentin is efficacious in RLS and PHN is unknown. In vitro studies have shown that gabapentin binds with high affinity to certain parts of voltage-activated calcium channels in the central nervous system. However, the relationship of this binding to the therapeutic effects of gabapentin enacarbil in RLS and PHN is unknown. The most common adverse reactions for adult patients with moderate-to-severe primary RLS and PHN receiving Horizant were somnolence/sedation, dizziness, headache, nausea and fatigue.
Status:
US Approved Rx
(2011)
Source:
ANDA202385
(2011)
Source URL:
First approved in 1993
Source:
NDA020189
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Felbamate is an antiepileptic indicated as monotherapy or as an adjunct to other anticonvulsants for the treatment of partial seizures resulting from epilepsy. Receptor-binding studies in vitro indicate that felbamate has weak inhibitory effects on GABA-receptor binding, benzodiazepine receptor binding, and is devoid of activity at the MK-801 receptor binding site of the NMDA receptor-ionophore complex. However, felbamate does interact as an antagonist at the strychnine-insensitive glycine recognition site of the NMDA receptor-ionophore complex. The mechanism by which felbamate exerts its anticonvulsant activity is unknown, but in animal test systems designed to detect anticonvulsant activity, felbamate has properties in common with other marketed anticonvulsants. In vitro receptor binding studies suggest that felbamate may be an antagonist at the strychnine-insensitive glycine-recognition site of the N-methyl-D-aspartate (NMDA) receptor-ionophore complex. Antagonism of the NMDA receptor glycine binding site may block the effects of the excitatory amino acids and suppress seizure activity. Animal studies indicate that felbamate may increase the seizure threshold and may decrease seizure spread. It is also indicated that felbamate has weak inhibitory effects on GABA-receptor binding, benzodiazepine receptor binding. Felbamate should be used only in those patients who respond inadequately to alternative treatments and whose epilepsy is so severe that a substantial risk of aplastic anemia and/or liver failure is deemed acceptable in light of the benefits conferred by its use. Felbatol is the brand name used in the United States for felbamate.
Status:
US Approved Rx
(2003)
Source:
ANDA076214
(2003)
Source URL:
First approved in 1992
Source:
NDA019865
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Sotalol has both beta-adrenoreceptor blocking and cardiac action potential duration prolongation antiarrhythmic properties. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. It is FDA approved for the treatment of ventricular arrhythmias, symptomatic atrial fibtillation, symptomatic atriall flutter. Common adverse reactions include bradyarrhythmia, chest pain, lightheadedness, palpitations, rash, nausea, dizziness, headache, dyspnea, fatigue. Proarrhythmic events were more common in sotalol treated patients also receiving digoxin. Sotalol should be administered with caution in conjunction with calcium blocking drugs because of possible additive effects on atrioventricular conduction or ventricular function. Patients treated with sotalol plus a catecholamine depletor should therefore be closely monitored for evidence of hypotension and/or marked bradycardia which may produce syncope.
Status:
US Approved Rx
(2017)
Source:
ANDA208633
(2017)
Source URL:
First approved in 1992
Source:
NDA018841
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Oxaprozin is a nonsteroidal anti-inflammatory drug (NSAID) with analgesic and antipyretic properties. Anti-inflammatory effects of Oxaprozin are believed to be due to inhibition of cylooxygenase in platelets which leads to the blockage of prostaglandin synthesis. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Oxaprozin is a non-selective NSAID, with a cell assay system showing lower COX-2 selectivity implying higher COX-1 selectivity. Oxaprozin is used to treat rheumatoid arthritis, osteoarthritis, dysmenorrhea, and to alleviate moderate pain.
Status:
US Approved Rx
(2021)
Source:
ANDA214209
(2021)
Source URL:
First approved in 1992
Source:
NDA020080
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sumatriptan is a serotonin (5-HT1B/1D) receptor agonist indicated for acute treatment of migraine with or without aura in adults. Sumatriptan is structurally similar to serotonin (5-HT), and is a 5-HT receptor (types 5-HT1D and 5-HT1B) agonist. The specific receptor subtypes it activates are present on the cranial arteries and veins. Acting as an agonist at these receptors, sumatriptan reduces the vascular inflammation associated with migraines. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve, which presumably accounts for sumatriptan's efficacy in treating cluster headaches. The injectable form of the drug has been shown to abort a cluster headache within 30 minutes in 77% of cases. Sumatriptan is effective for ending or relieving the intensity of migraine and cluster headaches. It is most effective taken early after the start of the pain. Injected sumatriptan is more effective than other formulations. Large doses of sumatriptan can cause sulfhemoglobinemia, a rare condition in which the blood changes from red to greenish-black, due to the integration of sulfur into the hemoglobin molecule. Serious cardiac events, including some that have been fatal, have occurred following the use of sumatriptan injection or tablets. Events reported have included coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia, and ventricular fibrillation (V-Fib).
Status:
US Approved Rx
(1992)
Source:
NDA020118
(1992)
Source URL:
First approved in 1992
Source:
NDA020118
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Desflurane is a non-flammable liquid administered via vaporizer as a general anesthetic. It is halogenated exclusively with fluorine and is very resistant to defluorination. For this reason, it is not associated with nephrotoxicity, as is the case with other inhalational anesthetics. Desflurane is indicated for the induction and/or maintenance of anesthesia and adults, and for maintenance of anesthesia in pediatric patients following the induction with other agents.
Status:
US Approved Rx
(2024)
Source:
ANDA217617
(2024)
Source URL:
First approved in 1992
Source:
ZEBETA by TEVA WOMENS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Bisoprolol is a cardioselective beta1-adrenergic blocking agent. It lower the heart rate and blood pressure and may be used to reduce workload on the heart and hence oxygen demands. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Bisoprolol can be used to treat cardiovascular diseases such as hypertension, coronary heart disease, arrhythmias, ischemic heart diseases, and myocardial infarction after the acute event. General side effects are: fatigue, asthenia, chest pain, malaise, edema, weight gain, angioedema. Concurrent use of rifampin increases the metabolic clearance of bisoprolol fumarate, shortening its elimination half-life.
Status:
US Approved Rx
(2012)
Source:
ANDA077388
(2012)
Source URL:
First approved in 1992
Source:
NDA019908
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Zolpidem is usually used for the treatment of insomnia as a hypnotic drug. It was also suggested to be effective in the treatment of dystonia in some studies. Zolpidem can be one of useful alternative pharmacological treatments for blepharospasm. Zolpidem interacts with a GABA-BZ receptor complex and shares some of the pharmacological properties of the benzodiazepines. In contrast to the benzodiazepines, which non-selectively bind to and activate all BZ receptor subtypes, zolpidem in vitro binds the BZ1 receptor preferentially with a high affinity ratio of the α1/α5 subunits. This selective binding of zolpidem on the BZ1 receptor is not absolute, but it may explain the relative absence of myorelaxant and anticonvulsant effects in animal studies as well as the preservation of deep sleep in human studies of zolpidem tartrate at hypnotic doses.