U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1001 - 1010 of 1085 results

Promazine (Sparine) is a phenothiazine neuroleptic used for short-term management of moderate to severe psychomotor agitation and treatment of agitation and restlessness in the elderly. Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazine's antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tuberoinfundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. Promazine is not approved for human use in the United States. It is available in the US for veterinary use under the names Promazine and Tranquazine.
Novobiocin (also known as streptonivicin) is an aminocoumarin antibiotic, active against Staphylococcus epidermidis. Novobiocin and other aminocoumarin antibiotics act as a potent competitive inhibitor of DNA gyrase B. The oral form of the drug was withdrawn from the market in 1999 due to safety or effectiveness reasons. Later it was discovered that novobiocin inhibited Hsp90 and topoisomerase II, and novobiocin was investigated in clinical trials against metastatic breast cancer and non-small cell lung cancer. Topical form of novobiocin was investigated in combination with nalidixic acid for treatment of psoriasis.
Status:
US Previously Marketed
Source:
Matromycin by Pfizer
(1956)
Source URL:
First approved in 1956
Source:
Matromycin by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oleandomycin is a macrolide antibiotic, which was first described under the designation P.A.105 by Sobin, English, and Celmer (1954-5). Later it appeared on the market under three names and in two forms: as pure oleandomycin ("matromycin," Pfizer; "romicil," Hoffmann-La Roche) and as a mixture with twice its weight of tetracycline ("sigmamycin," Pfizer). Oleandomycin can be employed to inhibit the activities of bacteria responsible for causing infections in the upper respiratory tract much like Erythromycin can. Both can affect staphylococcus and enterococcus genera. Oleoandomycin is reported to inhibit most gram-positive bacteria, but has only a slight inhibiting effect on gram-negative bacteria, rickettsiae, and larger viruses. The spectrum of activity on micro-organisms is therefore wider than that of penicillin and streptomycin, but narrower than that of chloramphenicol and the tetracyclines. Oleandomycin is approved as a veterinary antibiotic in some countries. It has been approved as a swine and poultry antibiotic in the United States. However, it is currently only approved in the United States for production uses. Oleandomycin is a bacteriostatic agent. Like erythromycin, oleandomycin binds to the 50s subunit of bacterial ribosomes, inhibiting the completion of proteins vital to survival and replication. It interferes with translational activity but also with 50s subunit formation. However, unlike erythromycin and its effective synthetic derivatives, it lacks a 12-hydroxyl group and a 3-methoxy group. This change in structure may adversely affect its interactions with 50S structures and explain why it is a less powerful antibiotic.
Iproniazid is a non-selective, irreversible monoamine oxidase inhibitor (MAO) of the hydrazine class. It was originally developed for the treatment of Tuberculosis, but in 1952, its antidepressant properties were discovered when researchers noted that patients given isoniazid became inappropriately happy. Iproniazid is no longer clinically prescribed and has been withdrawn due to incidences of hepatotoxicity.
Status:
US Previously Marketed
Source:
METATENSIN #2 by SANOFI AVENTIS US
(1982)
Source URL:
First approved in 1954

Class (Stereo):
CHEMICAL (ABSOLUTE)



Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Status:
US Previously Marketed
Source:
Ilidar by Hoffmann-La Roche
(1954)
Source URL:
First approved in 1954
Source:
Ilidar by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


AZAPETINE, a benzazepine derivative, is an alpha-1 adrenoceptor antagonist. It is a potent arterial vasodilator in the treatment of peripheral vascular diseases.
Status:
US Previously Marketed
Source:
CO-PYRONIL PYRROBUTAMINE NAPHTHALENE DISULFONATE by DISTA PRODUCTS
(1961)
Source URL:
First approved in 1952
Source:
Pyronil by Lilly
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

PYRROBUTAMINE is a potent H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate the inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria.
Status:
US Previously Marketed
First approved in 1951
Source:
Paveril Phosphate by Lilly
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Dimoxyline is the synthetic analogue of papaverine, Acute toxicity studies show it to be less toxic than papaverine. No analgesic action and no tolerance development in experimental animals by repeated administration. But Dimoxyline does not appear to be as potent as papaverine in comparable dosage. Dimoxyline is indicated for the treatment of patients with angina pectoris. Also, significant amount of benefit was claimed in patients with acute or chronic phlebitis, arterial thrombosis or embolism, Raynaud’s phenomena and early thromboangiitis obliterans or arteriosclerosis obliterans. Detected adverse events are: nausea or abdominal cramps.
Status:
US Previously Marketed
First approved in 1951
Source:
Paveril Phosphate by Lilly
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Dimoxyline is the synthetic analogue of papaverine, Acute toxicity studies show it to be less toxic than papaverine. No analgesic action and no tolerance development in experimental animals by repeated administration. But Dimoxyline does not appear to be as potent as papaverine in comparable dosage. Dimoxyline is indicated for the treatment of patients with angina pectoris. Also, significant amount of benefit was claimed in patients with acute or chronic phlebitis, arterial thrombosis or embolism, Raynaud’s phenomena and early thromboangiitis obliterans or arteriosclerosis obliterans. Detected adverse events are: nausea or abdominal cramps.
Status:
US Previously Marketed
First approved in 1950
Source:
PIG SWIGFOR SWINE AND POULTRY by LeGear Animal Health
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Piperazine, a six membered nitrogen containing heterocycle, is of great significance to the rational design of drugs. This moiety can be found in a plethora of well-known drugs with various therapeutic uses, such as antipsychotic, antihistamine, antianginal, antidepressant, anticancer, antiviral, cardio protectors, anti-inflammatory, and imaging agents. Slight modification to the substitution pattern on the piperazine nucleus facilitates a recognizable difference in the medicinal potential of the resultant molecules. Piperazine has been used as an antihelmintic drug. Piperazine works by paralyzing the worms. They are then passed in the stool.

Showing 1001 - 1010 of 1085 results