U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 991 - 1000 of 1085 results

Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(22)(ii) antifungal:diaper rash benzoxiquine
Source URL:
First approved in 1964
Source:
UDDER BALM by H. W. Naylor Company Inc.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

In cosmetics and personal care products, Benzoxiquine has been reported to be used in the formulation of hair tonics, dressings, and other hair grooming aids. Benzoxiquine is described as a biocide for use in cosmetic products. It is currently reported to be used in only one product. In a separate finding, the Food and Drug Administration determined that Benzoxiquine is not generally recognized as safe and effective in over-the-counter topical antifungal drug products. The only data available on the toxicity of Benzoxiquine indicates that it is mutagenic in the Ames test without metabolic activation. Because of the lack of data, the safety of Benzoxiquine could not be substantiated. The data needed to make a safety assessment include purity/impurities, ultraviolet absorption (if there is absorption, then photosensitization data will be needed), 28-day dermal toxicity, dermal teratogenicity, ocular irritation (if already available only), dermal irritation and sensitization, and two different genotoxicity studies (one using a mammalian system). If the latter data are positive, dermal carcinogenesis data using the methods of the National Toxicology Program will be needed. It cannot be concluded that Benzoxiquine is safe for use in cosmetic products until these safety data have been obtained and evaluated.
Status:
US Previously Marketed
Source:
DEANER 100MG by RIKER
(1961)
Source URL:
First approved in 1958
Source:
Deaner by Riker
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

DEANOL is an inactive component of CERAVE® hydrocortisone anti-itch cream, which is used for temporarily relieve itching associated with minor skin irritations, inflammation, and rashes due to eczema, soaps, detergents, cosmetics, seborrheic dermatitis, psoriasis. DEANOL is also used as a food additive.
Status:
US Previously Marketed
First approved in 1958

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
US Previously Marketed
Source:
Leritine by Merck Sharp & Dohme
(1957)
Source URL:
First approved in 1957
Source:
Leritine by Merck Sharp & Dohme
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Aniledrine is a narcotic pain reliver. The drug was prescribed as an analgesic in anaesthesia (Leritine brand name), however, it is no longer available on the market. Although the exact mechanism is not fully understood, aniledrine appears to elicit its action by binding to endorphine receptors in CNS.
Status:
US Previously Marketed
First approved in 1957

Class (Stereo):
CHEMICAL (ACHIRAL)


P-32 is a radioactive isotope of phosphorus with a half-life of 14.29 days. Radioactive decay of P-32 produces beta-particles (electrons) which are able to penetrate tissue at a range of 3-8 mm. Phosphate ion P-32 has many applications in medicine and biology. P32 sodium phosphate was approved by the FDA for the treatment of polycythemia vera, chronic myelocytic leukemia, and chronic lymphocytic leukemia. P32-phosphate may also be used in the palliative treatment of selected patients with multiple areas of skeletal metastases. As metabolic uptake of phosphorus is selectively increased in malignant tissues, P-32 was also used for cancer diagnostics.
Status:
US Previously Marketed
First approved in 1957

Class (Stereo):
CHEMICAL (ACHIRAL)


P-32 is a radioactive isotope of phosphorus with a half-life of 14.29 days. Radioactive decay of P-32 produces beta-particles (electrons) which are able to penetrate tissue at a range of 3-8 mm. Phosphate ion P-32 has many applications in medicine and biology. P32 sodium phosphate was approved by the FDA for the treatment of polycythemia vera, chronic myelocytic leukemia, and chronic lymphocytic leukemia. P32-phosphate may also be used in the palliative treatment of selected patients with multiple areas of skeletal metastases. As metabolic uptake of phosphorus is selectively increased in malignant tissues, P-32 was also used for cancer diagnostics.
Status:
US Previously Marketed
First approved in 1957

Class (Stereo):
CHEMICAL (ACHIRAL)


P-32 is a radioactive isotope of phosphorus with a half-life of 14.29 days. Radioactive decay of P-32 produces beta-particles (electrons) which are able to penetrate tissue at a range of 3-8 mm. Phosphate ion P-32 has many applications in medicine and biology. P32 sodium phosphate was approved by the FDA for the treatment of polycythemia vera, chronic myelocytic leukemia, and chronic lymphocytic leukemia. P32-phosphate may also be used in the palliative treatment of selected patients with multiple areas of skeletal metastases. As metabolic uptake of phosphorus is selectively increased in malignant tissues, P-32 was also used for cancer diagnostics.
Status:
US Previously Marketed
First approved in 1957

Class (Stereo):
CHEMICAL (ACHIRAL)


P-32 is a radioactive isotope of phosphorus with a half-life of 14.29 days. Radioactive decay of P-32 produces beta-particles (electrons) which are able to penetrate tissue at a range of 3-8 mm. Phosphate ion P-32 has many applications in medicine and biology. P32 sodium phosphate was approved by the FDA for the treatment of polycythemia vera, chronic myelocytic leukemia, and chronic lymphocytic leukemia. P32-phosphate may also be used in the palliative treatment of selected patients with multiple areas of skeletal metastases. As metabolic uptake of phosphorus is selectively increased in malignant tissues, P-32 was also used for cancer diagnostics.
Status:
US Previously Marketed
Source:
Matromycin by Pfizer
(1956)
Source URL:
First approved in 1956
Source:
Matromycin by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oleandomycin is a macrolide antibiotic, which was first described under the designation P.A.105 by Sobin, English, and Celmer (1954-5). Later it appeared on the market under three names and in two forms: as pure oleandomycin ("matromycin," Pfizer; "romicil," Hoffmann-La Roche) and as a mixture with twice its weight of tetracycline ("sigmamycin," Pfizer). Oleandomycin can be employed to inhibit the activities of bacteria responsible for causing infections in the upper respiratory tract much like Erythromycin can. Both can affect staphylococcus and enterococcus genera. Oleoandomycin is reported to inhibit most gram-positive bacteria, but has only a slight inhibiting effect on gram-negative bacteria, rickettsiae, and larger viruses. The spectrum of activity on micro-organisms is therefore wider than that of penicillin and streptomycin, but narrower than that of chloramphenicol and the tetracyclines. Oleandomycin is approved as a veterinary antibiotic in some countries. It has been approved as a swine and poultry antibiotic in the United States. However, it is currently only approved in the United States for production uses. Oleandomycin is a bacteriostatic agent. Like erythromycin, oleandomycin binds to the 50s subunit of bacterial ribosomes, inhibiting the completion of proteins vital to survival and replication. It interferes with translational activity but also with 50s subunit formation. However, unlike erythromycin and its effective synthetic derivatives, it lacks a 12-hydroxyl group and a 3-methoxy group. This change in structure may adversely affect its interactions with 50S structures and explain why it is a less powerful antibiotic.
Status:
US Previously Marketed
Source:
ACETAMINOPHEN, CAFFEINE, AND DIHYDROCODEINE BITARTRATE by MIKART
(1997)
Source URL:
First approved in 1956
Source:
Rapacodin by Knoll
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dihydrocodeine is an opioid analgesic used as an alternative or adjunct to codeine to treat moderate to severe pain, severe dyspnea, and cough. It is semi-synthetic, and was developed in Germany in 1908 during an international search to find a more effective antitussive agent to help reduce the spread of airborne infectious diseases such as tuburculosis. It was marketed in 1911. Dihydrocodeine is metabolized to dihydromorphine -- a highly active metabolite with a high affinity for mu opioid receptors. Dihydrocodeine is used for the treatment of moderate to severe pain, including post-operative and dental pain. It can also be used to treat chronic pain, breathlessness and coughing. In heroin addicts, dihydrocodeine has been used as a substitute drug, in doses up to 2500mg/day to treat addiction.

Showing 991 - 1000 of 1085 results