{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
atropine
to a specific field?
There is one exact (name or code) match for atropine
Status:
US Approved Rx
(2001)
Source:
NDA021146
(2001)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters. Atropine is relatively selective for muscarinic receptors. Its potency at nicotinic receptors is much lower, and actions at non-muscarinic receptors are generally undetectable clinically. Atropine does not distinguish among the M1, M2, and M3 subgroups of muscarinic receptors.
Status:
US Approved Rx
(2001)
Source:
NDA021146
(2001)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters. Atropine is relatively selective for muscarinic receptors. Its potency at nicotinic receptors is much lower, and actions at non-muscarinic receptors are generally undetectable clinically. Atropine does not distinguish among the M1, M2, and M3 subgroups of muscarinic receptors.
Status:
US Approved Rx
(2017)
Source:
ANDA207302
(2017)
Source URL:
First approved in 2004
Source:
ENABLEX by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Darifenacin is a selective muscarinic receptor M3 antagonist which was approved by FDA for the treatment of overactive bladder.
Status:
US Approved Rx
(2010)
Source:
ANDA091575
(2010)
Source URL:
First approved in 2004
Source:
SANCTURA by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trospium is an antispasmodic, antimuscarinic agent indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary frequency. Receptor assays showed that trospium has negligible affinity for nicotinic receptors as compared to muscarinic receptors at concentrations obtained from therapeutic doses. Trospium antagonizes the effect of acetylcholine on muscarinic receptors in cholinergically innervated organs. Its parasympatholytic action reduces the tonus of smooth muscle in the bladder. Trospium is marketed under the brand name Sancturain the US, Tropez OD in India,Trosec in Canada, Regurin and Flotros in the United Kingdom and Spasmex in Germany, Russia, Turkey, Argentina, Chile and Israel.
Status:
US Approved Rx
(2003)
Source:
ANDA076025
(2003)
Source URL:
First approved in 1986
Source:
ATROVENT by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Ipratropium (ipratropium bromide, ATROVENT® HFA) is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is indicated for the maintenance treatment of bronchospasm associated with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and emphysema. Ipratropium (ipratropium bromide, ATROVENT® HFA) is an anticholinergic (parasympatholytic) agent which, based on animal studies, appears to inhibit vagally-mediated reflexes by antagonizing the action of acetylcholine, the transmitter agent released at the neuromuscular junctions in the lung. Anticholinergics prevent the increases in intracellular concentration of Ca2+ which is caused by interaction of acetylcholine with the muscarinic receptors on bronchial smooth muscle.
Status:
US Approved Rx
(2020)
Source:
ANDA214415
(2020)
Source URL:
First approved in 1975
Source:
DITROPAN by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Oxybutynin is an antispasmodic, anticholinergic agent indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and frequency. Oxybutynin relaxes bladder smooth muscle. Oxybutynin exhibits only one-fifth of the anticholinergic activity of atropine on the rabbit detrusor muscle, but four to ten times the antispasmodic activity. Antimuscarinic activity resides predominantly in the R-isomer. Oxybutynin exerts a direct antispasmodic effect on smooth muscle and inhibits the muscarinic action of acetylcholine on smooth muscle. No blocking effects occur at skeletal neuromuscular junctions or autonomic ganglia (antinicotinic effects). By inhibiting particularily the M1 and M2 receptors of the bladder, detrusor activity is markedly decreased.
Status:
US Approved Rx
(2004)
Source:
ANDA076831
(2004)
Source URL:
First approved in 1970
Source:
URISPAS by ORTHO MCNEIL JANSSEN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Flavoxate is a drug, indicated for symptomatic relief of dysuria, urgency, nocturia, suprapubic pain, frequency and incontinence as may occur in cystitis, prostatitis, urethritis, urethrocystitis/urethrotrigonitis. Flavoxate is not indicated for definitive treatment, but is compatible with drugs used for the treatment of urinary tract infections. It was approved for use in the United States in 1970 and continues to be used. Drug acts as a direct antagonist at muscarinic acetylcholine receptors in cholinergically innervated organs. Its anticholinergic-parasympatholytic action reduces the tonus of smooth muscle in the bladder, effectively reducing the number of required voids, facilitating increased volume per void. Common side effects are those of parasympathetic stimulation and include dryness of the mouth and eyes, decreased sweating, headache, visual blurring, constipation, urinary retention, impotence, tachycardia and palpitations, anxiety, restlessness and in some instances agitation and delusions.
Status:
US Approved Rx
(2020)
Source:
ANDA212342
(2020)
Source URL:
First marketed in 1899
Class (Stereo):
CHEMICAL (ABSOLUTE)
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.
Status:
Investigational
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Atropine-N-oxide hydrochloride is an alkaloid of the belladonna plants. It is the major metabolite of atropine. It is a competitive nonselective antagonist at central and peripheral muscarinic acetylcholine receptors.