U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 29 results

Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters. Atropine is relatively selective for muscarinic receptors. Its potency at nicotinic receptors is much lower, and actions at non-muscarinic receptors are generally undetectable clinically. Atropine does not distinguish among the M1, M2, and M3 subgroups of muscarinic receptors.
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
Investigational
Source:
USAN:Atropine Oxide Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Atropine-N-oxide hydrochloride is an alkaloid of the belladonna plants. It is the major metabolite of atropine. It is a competitive nonselective antagonist at central and peripheral muscarinic acetylcholine receptors.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (EPIMERIC)

Status:
Other

Class (Stereo):
CHEMICAL (EPIMERIC)

Status:
Other

Class (Stereo):
CHEMICAL (EPIMERIC)

Status:
Other

Class (Stereo):
CHEMICAL (EPIMERIC)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

Tropic acid (Tropate) is a chiral substance, existing as either a racemic mixture or as a single enantiomer. Tropate is classified as a beta hydroxy acid or a Beta hydroxy acid derivative. Beta hydroxy acids are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Tropate is considered to be soluble (in water) and acidic. Tropate can be synthesized from hydratropic acid and propionic acid. Tropate can be synthesized into tropan-3alpha-yl 3-hydroxy-2-phenylpropanoate. Tropic acid is proposed be used topicaly for the treatment of wrinkles.