U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 821 - 830 of 4602 results

Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Flecainide is a potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Flecainide has local anesthetic activity and belongs to the membrane stabilizing (Class 1) group of antiarrhythmic agents; it has electrophysiologic effects characteristic of the IC class of antiarrhythmics. Flecainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. Flecainide is a sodium channel blocker, binding to voltage gated sodium channels. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses. Ventricular excitability is depressed and the stimulation threshold of the ventricle is increased during diastole. Flecainide is sold under the trade name Tambocor (manufactured by 3M pharmaceuticals). Flecainide went off-patent on February 10, 2004. In addition to being marketed as Tambocor, it is also available in generic version and under the trade names Almarytm, Apocard, Ecrinal, and Flécaine.
Leuprolide acetate is a synthetic nonapeptide analog of naturally occurring gonadotropin-releasing hormone (GnRH or LH-RH). The analog possesses greater potency than the natural hormone. It acts primarily on the anterior pituitary, inducing a transient early rise in gonadotrophin release. With continued use, leuprorelin causes pituitary desensitisation and/or down-regulation, leading to suppressed circulating levels of gonadotrophins and sex hormones. Leuprolide acetate used to treat a wide range of sex hormone-related disorders including advanced prostatic cancer, uterine leiomyomata (fibroids), endometriosis and precocious puberty.
Levobunolol is a non-cardioselective beta-adrenoceptor blocking agent, equipotent at both beta1 and beta2 adrenergic receptors. Levobunolol is greater than 60 times more potent than its dextro isomer in its beta-blocking activity, yet equipotent in its potential for direct myocardial depression. Accordingly, the levo isomer, levobunolol, is used. Levobunolol does not have significant local anesthetic (membrane-stabilizing) or intrinsic sympathomimetic activity. Levobunolol, sold under the brand name Betagan, has been shown to be an active agent in lowering elevated as well as normal intraocular pressure (IOP) whether or not accompanied by glaucoma. Levobunolol is contraindicated in those individuals with bronchial asthma or with a history of bronchial asthma, or severe chronic obstructive pulmonary disease sinus bradycardia; second and third-degree atrioventricular block; overt cardiac failure cardiogenic shock; or hypersensitivity to any component of these products.

Class (Stereo):
CHEMICAL (ABSOLUTE)



PRIMAXIN® is a combination of cilastatin and imipenem. Cilastatin is a specific and reversible renal dehydropeptidase-I inhibitor. Imipenem is a penem antibacterial drug. Since the antibiotic, imipenem, is hydrolyzed by dehydropeptidase-I, which resides in the brush border of the renal tubule, cilastatin is administered with imipenem to block the metabolism and thus the inactivation of imipenem so that antibacterial levels of imipenem can be attained in the urine. However, cilastatin in and of itself does not have any antibacterial activity. It also prevents the metabolism of leukotriene D4 to leukotriene E4 through the inhibition of leukotriene D4 dipeptidase.
Levocarnitine propionate or Propionyl L-carnitine (PLC) is the propionyl ester of L-carnitine. Propionyl-L-carnitine stimulates energy production in ischaemic muscles by increasing citric acid cycle flux and stimulating pyruvate dehydrogenase activity. The free radical scavenging activity of the drug may also be beneficial. Propionyl-L-carnitine improves coagulative fibrinolytic homeostasis in vasal endothelium and positively affects blood viscosity. It exhibits a high affinity for the muscle enzyme, carnitine acyl transferase, and as such readily converts into propionyl-CoA and free carnitine. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. PLC is marketed under the trade name Dromos®. It is indicated for patients with peripheral arterial occlusive disorders and for exercise intolerance enhancement in patients with chronic congestive heart failure. Dromos is marketed in Italy.
Betaxolol or SL 75212, (± )-1-(isopropylamino)-3-(p-(cyclopropylmethoxyethyl-phenoxy)2-propranol, is a potent cardioselective beta1-adrenoceptor antagonist devoid of intrinsic sympathomimetic activity with very weak local anaesthetic properties. Oral betaxolol has been used for the treatment of essential hypertension. Betaxolol is used topically in glaucoma and ocular hypertension.
Midazolam, previously marketed under the trade name Versed, is a medication used for anesthesia, procedural sedation, trouble sleeping, and severe agitation. Midazolam is a short-acting benzodiazepine central nervous system (CNS) depressant. Pharmacodynamic properties of midazolam and its metabolites, which are similar to those of other benzodiazepines, include sedative, anxiolytic, amnesic and hypnotic activities. Benzodiazepine pharmacologic effects appear to result from reversible interactions with the γ-amino butyric acid (GABA) benzodiazepine receptor in the CNS, the major inhibitory neurotransmitter in the central nervous system. The action of midazolam is readily reversed by the benzodiazepine receptor antagonist, flumazenil. Data from published reports of studies in pediatric patients clearly demonstrate that oral midazolam provides safe and effective sedation and anxiolysis prior to surgical procedures that require anesthesia as well as before other procedures that require sedation but may not require anesthesia. The most commonly reported effective doses range from 0.25 to 1 mg/kg in children (6 months to <16 years). The single most commonly reported effective dose is 0.5 mg/kg. Time to onset of effect is most frequently reported as 10 to 20 minutes. The effects of midazolam on the CNS are dependent on the dose administered, the route of administration, and the presence or absence of other medications.
Amiodarone is an antiarrhythmic with mainly class III properties, but it possesses electrophysiologic characteristics of all four Vaughan Williams classes. Like class I drugs, amiodarone blocks sodium channels at rapid pacing frequencies, and like class II drugs, amiodarone exerts a noncompetitive antisympathetic action. In addition to blocking sodium channels, amiodarone blocks myocardial potassium channels, which contributes to slowing of conduction and prolongation of refractoriness. It is indicated for initiation of treatment and prophylaxis of frequently recurring ventricular fibrillation and hemodynamically unstable ventricular tachycardia in patients refractory to other therapy. The most common adverse reactions (1-2%) leading to discontinuation of intravenous amiodarone therapy are hypotension, asystole/cardiac arrest/pulseless electrical activity, VT, and cardiogenic shock. Other important adverse reactions are, torsade de pointes (TdP), congestive heart failure, and liver function test abnormalities. Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone.