U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ABSOLUTE
Molecular Formula C18H24N2O5
Molecular Weight 348.3936
Optical Activity UNSPECIFIED
Defined Stereocenters 3 / 3
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of ENALAPRILAT ANHYDROUS

SMILES

C[C@H](N[C@@H](CCC1=CC=CC=C1)C(O)=O)C(=O)N2CCC[C@H]2C(O)=O

InChI

InChIKey=LZFZMUMEGBBDTC-QEJZJMRPSA-N
InChI=1S/C18H24N2O5/c1-12(16(21)20-11-5-8-15(20)18(24)25)19-14(17(22)23)10-9-13-6-3-2-4-7-13/h2-4,6-7,12,14-15,19H,5,8-11H2,1H3,(H,22,23)(H,24,25)/t12-,14-,15-/m0/s1

HIDE SMILES / InChI

Description
Curator's Comment: description was created based on several sources, including

Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.

Originator

Curator's Comment: # Merck

Approval Year

TargetsConditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Primary
VASOTEC

Approved Use

Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive. Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials). Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.), Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive., Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials)., Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.)

Launch Date

1985
Palliative
VASOTEC

Approved Use

Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive. Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials). Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.), Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive., Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials)., Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.)

Launch Date

1985
Palliative
VASOTEC

Approved Use

Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive. Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials). Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.), Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive., Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials)., Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.)

Launch Date

1985
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
44.27 ng/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRIL plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
37.61 ng/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRILAT plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
84.9 ng × h/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRIL plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
372.6 ng × h/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRILAT plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
10.75 h
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRIL plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
24.73 h
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRILAT plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
Doses

Doses

DosePopulationAdverse events​
22.5 mg 1 times / day multiple, oral (mean)
Recommended
Dose: 22.5 mg, 1 times / day
Route: oral
Route: multiple
Dose: 22.5 mg, 1 times / day
Sources:
unhealthy, adult
n = 276
Health Status: unhealthy
Condition: hypertension
Age Group: adult
Sex: M+F
Population Size: 276
Sources:
Disc. AE: Pruritus, Glossitis...
AEs leading to
discontinuation/dose reduction:
Pruritus (grade 1-3, 0.7%)
Glossitis (grade 1-4, 0.4%)
Dry cough (all grades, 1.1%)
Sources:
10 mg 1 times / day single, oral
Recommended
Dose: 10 mg, 1 times / day
Route: oral
Route: single
Dose: 10 mg, 1 times / day
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
healthy, mean age 32.4 years
n = 51
Health Status: healthy
Age Group: mean age 32.4 years
Sex: M+F
Population Size: 51
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
Disc. AE: Dysphagia, Hypotension...
AEs leading to
discontinuation/dose reduction:
Dysphagia (grade 1-2, 2%)
Hypotension (grade 1-2, 2%)
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
AEs

AEs

AESignificanceDosePopulation
Dry cough all grades, 1.1%
Disc. AE
22.5 mg 1 times / day multiple, oral (mean)
Recommended
Dose: 22.5 mg, 1 times / day
Route: oral
Route: multiple
Dose: 22.5 mg, 1 times / day
Sources:
unhealthy, adult
n = 276
Health Status: unhealthy
Condition: hypertension
Age Group: adult
Sex: M+F
Population Size: 276
Sources:
Pruritus grade 1-3, 0.7%
Disc. AE
22.5 mg 1 times / day multiple, oral (mean)
Recommended
Dose: 22.5 mg, 1 times / day
Route: oral
Route: multiple
Dose: 22.5 mg, 1 times / day
Sources:
unhealthy, adult
n = 276
Health Status: unhealthy
Condition: hypertension
Age Group: adult
Sex: M+F
Population Size: 276
Sources:
Glossitis grade 1-4, 0.4%
Disc. AE
22.5 mg 1 times / day multiple, oral (mean)
Recommended
Dose: 22.5 mg, 1 times / day
Route: oral
Route: multiple
Dose: 22.5 mg, 1 times / day
Sources:
unhealthy, adult
n = 276
Health Status: unhealthy
Condition: hypertension
Age Group: adult
Sex: M+F
Population Size: 276
Sources:
Dysphagia grade 1-2, 2%
Disc. AE
10 mg 1 times / day single, oral
Recommended
Dose: 10 mg, 1 times / day
Route: oral
Route: single
Dose: 10 mg, 1 times / day
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
healthy, mean age 32.4 years
n = 51
Health Status: healthy
Age Group: mean age 32.4 years
Sex: M+F
Population Size: 51
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
Hypotension grade 1-2, 2%
Disc. AE
10 mg 1 times / day single, oral
Recommended
Dose: 10 mg, 1 times / day
Route: oral
Route: single
Dose: 10 mg, 1 times / day
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
healthy, mean age 32.4 years
n = 51
Health Status: healthy
Age Group: mean age 32.4 years
Sex: M+F
Population Size: 51
Sources: Page: nda/2013/204308Orig1s000MedR.pdf - p.40
Sourcing

Sourcing

Vendor/AggregatorIDURL
PubMed

PubMed

TitleDatePubMed
Drug interaction: omeprazole and phenprocoumon.
2001
Modulation of the renin-angiotensin system may alter the adrenocortical regeneration.
2001
Angiotensin-converting enzyme inhibitors and AT1-receptor antagonist restore nitric oxide synthase (NOS) activity and neuronal NOS expression in the adrenal glands of spontaneously hypertensive rats.
2001 Apr
The effects of allicin and enalapril in fructose-induced hyperinsulinemic hyperlipidemic hypertensive rats.
2001 Apr
Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice.
2001 Apr
Effect of 3 years of antihypertensive therapy on renal structure in type 1 diabetic patients with albuminuria: the European Study for the Prevention of Renal Disease in Type 1 Diabetes (ESPRIT).
2001 Apr
Abnormal renal medullary response to angiotensin II in SHR is corrected by long-term enalapril treatment.
2001 Apr
Efficacy of different drug classes used to initiate antihypertensive treatment in black subjects: results of a randomized trial in Johannesburg, South Africa.
2001 Apr 9
Abnormality of the myocardial sympathetic nervous system in a patient with Becker muscular dystrophy detected with iodine-123 metaiodobenzylguanidine scintigraphy.
2001 Aug
[ACE inhibition in patients with myocardial infarct and ventricular dysfunction: inappropriate application of therapy standards in patient samples].
2001 Feb
New insights in the pathophysiology of mitral and aortic regurgitation in pediatric age: role of angiotensin-converting enzyme inhibitor therapy.
2001 Feb
On glomerular structural alterations in type-1 diabetes. Companions of early diabetic glomerulopathy.
2001 Feb
Intolerance to ACE-inhibitor drugs.
2001 Feb
Comparison of candesartan versus enalapril in essential hypertension. Italian Candesartan Study Group.
2001 Feb
Mortality after coronary artery occlusion in different models of cardiac hypertrophy in rats.
2001 Feb
Reduction of exercise-induced myocardial ischemia during add-on treatment with the angiotensin-converting enzyme inhibitor enalapril in patients with normal left ventricular function and optimal beta blockade.
2001 Feb
Modulation of alveolar-capillary sodium handling as a mechanism of protection of gas transfer by enalapril, and not by losartan, in chronic heart failure.
2001 Feb
Sevelamer hydrochloride (Renagel), a phosphate-binding polymer, does not alter the pharmacokinetics of two commonly used antihypertensives in healthy volunteers.
2001 Feb
Mechanisms underlying renoprotection during renin-angiotensin system blockade.
2001 Feb
Acute administration of nicotine impairs the hypotensive responses to bradykinin in rats.
2001 Feb 16
Control of renin secretion from adrenal gland in transgenic Ren-2 and normal rats.
2001 Feb 28
Low-dose ACE with alpha- or beta-adrenergic receptor inhibitors have beneficial SHR cardiovascular effects.
2001 Jan
Volume-weighted mean nuclear volume and numerical nuclear density in the cardiomyocyte following enalapril and verapamil treatment.
2001 Jan
Acute effects of E-3174, a human active metabolite of losartan, on the cardiovascular system in tachycardia-induced canine heart failure.
2001 Jan
Aldosterone escape during angiotensin-converting enzyme inhibitor therapy in essential hypertensive patients with left ventricular hypertrophy.
2001 Jan-Feb
IgA nephropathy and inhibitors of the renin angiotensin system: is reduction in proteinuria adequate proof of efficacy?
2001 Jul
Coadministration of losartan and enalapril exerts additive antiproteinuric effect in IgA nephropathy.
2001 Jul
Remission achieved in chronic nephropathy by a multidrug approach targeted at urinary protein excretion.
2001 Jul
Effect of the drug-matrix on the stability of enalapril maleate in tablet formulations.
2001 Jul
Weight reduction and pharmacologic treatment in obese hypertensives.
2001 Jun
Effects of various antihypertensive drugs on the function of osteoblast.
2001 Jun
Differential effects of nifedipine and co-amilozide on the progression of early carotid wall changes.
2001 Jun 19
The influence of chronic antihypertensive treatment on the central pressor response in SHR.
2001 Mar
Beneficial effects of nicorandil versus enalapril in chronic rheumatic severe mitral regurgitation: six months follow up echocardiographic study.
2001 Mar
Perioperative administration of angiotensin converting enzyme inhibitors decreases the severity and duration of pleural effusions following bidirectional cavopulmonary anastomosis.
2001 Mar
Management of asymptomatic left ventricular dysfunction.
2001 Mar
What are 'tissue ACE inhibitors,' and should they be used instead of other ACE inhibitors?
2001 Mar
A comparative study of morphological changes in spontaneously hypertensive rats and normotensive Wistar Kyoto rats treated with an angiotensin-converting enzyme inhibitor or a calcium-channel blocker.
2001 Mar
Angiotensin-converting enzyme inhibitor dosages in elderly patients with heart failure.
2001 Mar
Strict volume control normalizes hypertension in peritoneal dialysis patients.
2001 Mar
Late escape from the antiproteinuric effect of ace inhibitors in nondiabetic renal disease.
2001 Mar
Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension.
2001 Mar 15
Comparison of the angiotensin II type 1-receptor antagonist YM358 and the angiotensin-converting enzyme inhibitor enalapril in rats with cardiac volume overload.
2001 May
Influence of ACE-inhibition on salt-mediated worsening of pulmonary gas exchange in heart failure.
2001 May
The bladder angiotensin system in female rats: response to infusions of angiotensin I and the angiotensin converting enzyme inhibitor enalaprilat.
2001 May
Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis.
2001 May
Improved survival with simendan after experimental myocardial infarction in rats.
2001 May 11
Reversible renal impairment induced by treatment with the angiotensin II receptor antagonist candesartan in a patient with bilateral renal artery stenosis.
2001 May 17
Racial differences in the response to drugs--pointers to genetic differences.
2001 May 3
Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction.
2001 May 3
Patents

Sample Use Guides

Hypertension: The recommended initial dose in patients not on diuretics is 5 mg once a day. Dosage Adjustment in Hypertensive Patients with Renal Impairment: The usual dose of enalapril is recommended for patients with a creatinine clearance >30 mL/min (serum creatinine of up to approximately 3 mg/dL). For patients with creatinine clearance ≤30 mL/min (serum creatinine ≥3 mg/dL), the first dose is 2.5 mg once daily. The dosage may be titrated upward until blood pressure is controlled or to a maximum of 40 mg daily. Heart Failure: The recommended initial dose is 2.5 mg. The recommended dosing range is 2.5 to 20 mg given twice a day
Route of Administration: Oral
Primary cultures of human proximal tubular cells (PTC) and renal cortical fibroblasts (CF) were exposed for 24 h to CyA in the presence or absence of enalaprilat (enalapril is a prodrug that is rapidly metabolized by liver esterases to enalaprilat). Enalaprilat completely reversed the stimulatory effects of CyA on CF collagen synthesis (CyA + enalaprilat 6.40 +/- 0.50% vs. CyA alone 8.33 +/- 0.56% vs. control 6.57 +/- 0.62% vs. enalaprilat alone 5.55 +/- 0.93%, p < 0.05) and PTC secretion of TGFbeta1 (0.71 +/- 0.11, 1.13 +/- 0.09, 0.89 +/- 0.07, and 0.67 +/- 0.09 ng/mg protein/day, respectively, p < 0.05).
Name Type Language
ENALAPRILAT ANHYDROUS
Common Name English
enalaprilat [INN]
Common Name English
ENALAPRIL DIACID DIHYDRATE ANHYDROUS [MI]
Common Name English
ENALAPRIL MALEATE IMPURITY C [EP IMPURITY]
Common Name English
L-PROLINE, 1-(N-(1-CARBOXY-3-PHENYLPROPYL)-L-ALANYL)-, (S)-
Systematic Name English
1-(N-((S)-1-CARBOXY-3-PHENYLPROPYL)-L-ALANYL)-L-PROLINE
Systematic Name English
(2S)-1-((2S)-2-(((1S)-1-CARBOXY-3-PHENYLPROPYL)AMINO)PROPANOYL)PYRROLIDINE-2-CARBOXYLIC ACID
Systematic Name English
Classification Tree Code System Code
NDF-RT N0000175562
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
NCI_THESAURUS C247
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
Code System Code Type Description
INN
5424
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
DAILYMED
Q508Q118JM
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
FDA UNII
Q508Q118JM
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
EPA CompTox
DTXSID0048975
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
NDF-RT
N0000178477
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY Decreased Blood Pressure [PE]
RXCUI
1545989
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY RxNorm
MERCK INDEX
m4893
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
NCI_THESAURUS
C76135
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
EVMPD
SUB06515MIG
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
CAS
76420-72-9
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
CHEBI
4786
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
PUBCHEM
5462501
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY
ECHA (EC/EINECS)
278-459-3
Created by admin on Fri Dec 15 15:46:27 GMT 2023 , Edited by admin on Fri Dec 15 15:46:27 GMT 2023
PRIMARY