{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1993)
Source:
NDA020006
(1993)
Source URL:
First approved in 1955
Source:
Levsin by Alaven Pharmaceutical LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Sorbitol is a polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. Used as a non-stimulant laxative via an oral suspension or enema. Sorbitol exerts its laxative effect by drawing water into the large intestine, thereby stimulating bowel movements. Sorbitol plays a vital step in the 'polyol pathway'. The sudden injection of extra sorbitol can ruin the equilibrium of enzymes that regulate the conversion of glucose to fructose in a process associated with the onset of diabetes and its complications. Further, the polyol pathway is involved with a complex network of metabolic activities; disruption leads to a cascade of problems (citations here, here and here) such as mitochondrial failure, cell apoptosis (cell death), and DNA fragmentation. In general, sorbitol induces cell hyperosmotic stress resulting in phosphorylation (uptake of phosphorus into cell) — an important on/off switch regulating enzymes and signaling networks.
Status:
US Approved Rx
(2021)
Source:
ANDA211304
(2021)
Source URL:
First approved in 1954
Source:
ARAMINE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Metaraminol is a potent sympathomimetic amine that increases both systolic and diastolic blood pressure, is an adrenergic receptor alpha-1 agonist.. Metaraminol is indicated for prevention and treatment of the acute hypotensive state occurring with spinal anesthesia. It is also indicated as adjunctive treatment of hypotension due to hemorrhage, reactions to medications, surgical complications, and shock associated with brain damage due to trauma or tumor. Metaraminol is also used in the treatment of priapism, in spite of this application was not approved, it appears to be effective.
Status:
US Approved Rx
(2013)
Source:
ANDA202202
(2013)
Source URL:
First approved in 1954
Source:
COUMADIN by BRISTOL MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Warfarin is an anticoagulant drug normally used to prevent blood clot formation as well as migration. Warfarin is marketed under the brand name Coumadin among others. Coumadin (crystalline warfarin sodium) is an anticoagulant which acts by inhibiting vitamin
K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the R- and S-enantiomers. Coumadin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism. It is also indicated for the prophylaxis and/or treatment of the thromboembolic
complications associated with atrial fibrillation and/or cardiac valve replacement. Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide. The degree of depression is dependent upon the dosage
administered and, in part, by the patient’s VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
Status:
US Approved Rx
(1955)
Source:
NDA010040
(1955)
Source URL:
First approved in 1954
Source:
HYPAQUE by GE HEALTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
This compound belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. A commonly used x-ray contrast medium. Used, alone or in combination, for a wide variety of diagnostic imaging methods, including angiography, urography, cholangiography, computed tomography, hysterosalpingography, and retrograde pyelography. It can be used for imaging the gastrointestinal tract in patients allergic to barium. Radiopaque agents are drugs used to help diagnose certain medical problems. They contain iodine, which blocks x-rays. Depending on how the radiopaque agent is given, it localizes or builds up in certain areas of the body. The resulting high level of iodine allows the x-rays to make a "picture" of the area. The areas of the body in which the radiopaque agent localizes will appear white on the x-ray film. This creates the needed distinction, or contrast, between one organ and other tissues.
Status:
US Approved Rx
(2022)
Source:
ANDA216003
(2022)
Source URL:
First approved in 1952
Source:
NDA008453
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Succinylcholine also known as suxamethonium is a quaternary skeletal muscle relaxant usually used in the form of its halogen salt. It is is indicated under brand name anectine as an adjunct to general anesthesia, to facilitate tracheal intubation, and to provide skeletal muscle relaxation during surgery or mechanical ventilation. Succinylcholine activates the muscle-type nicotinic acetylcholine receptor followed by desensitization. Succinylcholine does not inhibit the presynaptic alpha3beta2 autoreceptor at clinically relevant concentrations, that provides a possible mechanistic explanation for the typical lack of tetanic fade in succinylcholine-induced neuromuscular blockade. Finally, was explored, that cardiovascular side effects (e.g., tachyarrhythmias) of succinylcholine were not mediated via direct activation of the autonomic ganglionic alpha3beta4 subtype because succinylcholine didn’t not activate the neuronal nicotinic acetylcholine receptor (nAChR) subtypes.
Status:
US Approved Rx
(2021)
Source:
ANDA214543
(2021)
Source URL:
First approved in 1950
Source:
NDA007513
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Norepinephrine (l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. Norepinephrine may be used for blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions) and as an adjunct in the treatment of cardiac arrest and profound hypotension. Norepinephrine performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy.If plasma volumes are not corrected, hypotension may recur when Norepinephrine is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g., decreased renal perfusion)with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and possible ischemic injury. Gangrene of extremities has been rarely reported. Overdoses or conventional doses in hypersensitive persons (e.g., hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.
Status:
US Approved Rx
(2022)
Source:
NDA216264
(2022)
Source URL:
First approved in 1950
Source:
NDA022272
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Indigotindisulfonic acid (also known as Indigo carmine) is a synthetic dye discovered in 18th century. It is used in many countiries as a food colorant and a pH indicator. In medicine the dye is used to localize ureteral orifices during cystoscopy and ureteral catheterization. In June 2014 the FDA announced the shortage of indigotindisulfonic acid.
Status:
US Approved Rx
(1994)
Source:
ANDA074346
(1994)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
4-AMINOSALICYLIC ACID (Paser) is an anti-tuberculosis drug used to treat tuberculosis in combination with other active agents. 4-AMINOSALICYLIC ACID (Paser) is most commonly used in patients with Multi-drug Resistant TB (MDR-TB) or when isoniazid and rifampin use is not possible due to a combination of resistance and/or intolerance. There are two mechanisms responsible for aminosalicylic acid's bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in the folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slow. Secondly, the aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis.
Status:
US Approved Rx
(2014)
Source:
ANDA202362
(2014)
Source URL:
First approved in 1947
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Proguanil is a prophylactic antimalarial drug, which works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells. Proguanil in combination with atovaquone are marked under the brand name malarone, which is indicated for the treatment of acute, uncomplicated P. falciparum malaria and for the prophylaxis of Plasmodium falciparum malaria, including in areas where chloroquine resistance has been reported. Atovaquone and proguanil, interfere with 2 different pathways involved in the biosynthesis of pyrimidines required for nucleic acid replication. Atovaquone is a selective inhibitor of parasite mitochondrial electron transport. Proguanil hydrochloride primarily exerts its effect by means of the metabolite cycloguanil, a dihydrofolate reductase inhibitor. Inhibition of dihydrofolate reductase in the malaria parasite disrupts deoxythymidylate synthesis. Recently were done experiments, which confirmed the hypothesis that proguanil might act on another target than dihydrofolate reductase. In addition, was made conclusion, that effectiveness of malarone was due to the synergism between atovaquone and proguanil and may not require the presence of cycloguanil.
Status:
US Approved Rx
(1998)
Source:
ANDA064210
(1998)
Source URL:
First approved in 1946
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Streptomycin is a water-soluble aminoglycoside derived from Streptomyces griseus. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like Streptomycin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically Streptomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.
Streptomycin is indicated for the treatment of tuberculosis. May also be used in combination with other drugs to treat tularemia (Francisella tularensis), plague (Yersia pestis), severe M. avium complex, brucellosis, and enterococcal endocarditis (e.g. E. faecalis, E. faecium).