U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Nisoldipine is a 1,4-dihydropyridine derivative with an outstanding vascular selectivity. As a specific calcium antagonist, it shortens the action potential and causes electromechanical uncoupling in ventricular myocardium. However, this effect, resulting in a negative inotropic action, appears at 100–1000 times higher concentrations of nisoldipine in comparison with its inhibition of calcium-dependent vascular contractions. Detailed analyses of pharmacological effects revealed additional properties such as enhancement of sodium excretion, an interaction with the reninangiotensin-aldosterone system and a protective effect against acute renal ischaemia, that may contribute to its therapeutic efficacy. Nisoldipine was developed at Bayer then licensed to Zeneca and marketed in the United States as SULAR. SULAR is indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. The mechanism of the therapeutic effect of nisoldipine is complex. It involves a decrease of the total peripheral vascular resistance (reduction of afterload) and an increase in coronary blood flow. Moreover, nisoldipine obviously normalises the impaired volume homoeostasis by improving renal function and thus reduces the need for activation of the ANP system. In the advanced stages of hypertension, nisoldipine prevents deleterious calcium overload and the resulting tissue damage.
Nalmefene is the first medication approved for alcoholism with the primary goal of reducing alcohol intake in an as needed approach. Nalmefene received a marketing authorization valid throughout the European Union on February 25, 2013 and is under development in Asia. Nalmefene is an opioid system modulator with a distinct μ, δ, and κ receptor profile. In vitro studies have demonstrated that Nalmefene is a selective opioid receptor ligand with antagonist activity at the μ and δ receptors and partial agonist activity at the κ receptor. In vivo studies have demonstrated that nalmefene reduces alcohol consumption, possibly by modulating cortico-mesolimbic functions. In the US, immediate-release injectable nalmefene was approved in 1995 as an antidote for opioid overdose. It was sold under the trade name Revex. The product was discontinued by its manufacturer around 2008. Currently Nalmefene is sold under the trade name Selincro. Selincro is indicated for the reduction of alcohol consumption in adult patients with alcohol dependence who have a high drinking-risk level, without physical withdrawal symptoms and who do not require immediate detoxification.
Iopromide is a molecule used as a contrast medium. It is a low osmolar, non-ionic contrast agent for intravascular use. It is commonly used in radiographic studies such as intravenous urograms, brain computer tomography (CT) and CT pulmonary angiograms (CTPAs). It appears to increase the risk of biguanide induced lactic acidosis. Interleukins are associated with an increased prevalence of delayed hypersensitivity reactions after iodinated contrast agent administration. Most common adverse reactions (>1%) are headache, nausea, injection site and infusion site reactions, vasodilatation, vomiting, back pain, urinary urgency, chest pain, pain, dysgeusia, and abnormal vision.
Ibutilide is a 'pure' class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels. Ibutilide is indicated for the rapid conversion of atrial fibrillation or atrial flutter of recent onset to sinus rhythm. Ibutilide is marketed as Corvert by Pfizer.
Epoprostenol (marketed as FLOLAN, VELETRI) is a prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. Epoprostenol (PGI2, PGX, prostacyclin), a metabolite of arachidonic acid, is a naturally occurring prostaglandin with potent vasodilatory activity and inhibitory activity of platelet aggregation. FLOLAN (epoprostenol sodium) for Injection is a sterile sodium salt formulated for intravenous (IV) administration. Epoprostenol has two major pharmacological actions: (1) direct vasodilation of pulmonary and systemic arterial vascular beds, and (2) inhibition of platelet aggregation. In animals, the vasodilatory effects reduce right and left ventricular afterload and increase cardiac output and stroke volume. The effect of epoprostenol on heart rate in animals varies with dose. At low doses, there is vagally mediated brudycardia, but at higher doses, epoprostenol causes reflex tachycardia in response to direct vasodilation and hypotension. No major effects on cardiac conduction have been observed. Additional pharmacologic effects of epoprostenol in animals include bronchodilation, inhibition of gastric acid secretion, and decreased gastric emptying. No available chemical assay is sufficiently sensitive and specific to assess the in vivo human pharmacokinetics of epoprostenol. FLOLAN is indicated for the long-term intravenous treatment of primary pulmonary hypertension and pulmonary hypertension associated with the scleroderma spectrum of disease in NYHA Class III and Class IV patients who do not respond adequately to conventional therapy.
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.
Metformin is the most widely used drug to treat type 2 diabetes, and is one of only two oral antidiabetic drugs on the World Health Organization (WHO) list of essential medicines. Metformin is an antihyperglycemic agent which improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. However, we still do not completely understand its mechanisms of action. The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The use of metformin, the most commonly prescribed drug for type 2 diabetes, was repeatedly associated with the decreased risk of the occurrence of various types of cancers, especially of pancreas and colon and hepatocellular carcinoma.
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Carvedilol competitively blocks β1, β2 and α1 receptors. The drug lacks sympathomimetic activity and has vasodilating properties that are exerted primarily through α1-blockade. Animal models indicate that carvedilol confers protection against myocardial necrosis, arrhythmia and cell damage caused by oxidising free radicals, and the drug has no adverse effects on plasma lipid profiles. COREG® (carvedilol) is a racemic mixture in which nonselective β-adrenoreceptor blocking activity is present in the S(-) enantiomer and α1-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilol is the first drug of its kind to be approved for the treatment of congestive heart failure, and is now the standard of care for this devastating disease. Carvedilol is also confirmed as effective in the management of mild to moderate hypertension and ischaemic heart disease.
Dexlansoprazole (trade names Kapidex, Dexilant) is a proton pump inhibitor (PPI) that is marketed by Takeda Pharmaceuticals for the treatment of erosive esophagitis and gastro-oesophageal reflux disease. Dexlansoprazole is used to heal and maintain healing of erosive esophagitis and to treat heartburn associated with gastroesophageal reflux disease (GERD). It lasts longer than lansoprazole, to which it is chemically related, and needs to be taken less often. Dexlansoprazole is supplied for oral administration as a dual delayed-release formulation in capsules and orally disintegrating tablets. The capsules and tablets contain dexlansoprazole in a mixture of two types of enteric-coated granules with different pH-dependent dissolution profiles. The most significant adverse reactions (≥2%) reported in clinical trials were diarrhea, abdominal pain, nausea, upper respiratory tract infection, vomiting, and flatulence.