U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Here are the exact (name or code) matches for tyrosine

 
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
US Previously Marketed
First approved in 1961

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tyrosine (L-form) is a non-essential amino acid, which is primarily required for the protein synthesis. This amino acid is the precursor of dopamine, norepinephrine, and epinephrine; therefore the lower concentration of tyrosine could be a peripheral marker of the hyperdopaminergic condition hypothesized to explain psychosis. Tyrosine supplements can improve cognition, increase energy, reduce anxiety, reduce depression, reduce levels of pain.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
US Previously Marketed
First approved in 1961

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tyrosine (L-form) is a non-essential amino acid, which is primarily required for the protein synthesis. This amino acid is the precursor of dopamine, norepinephrine, and epinephrine; therefore the lower concentration of tyrosine could be a peripheral marker of the hyperdopaminergic condition hypothesized to explain psychosis. Tyrosine supplements can improve cognition, increase energy, reduce anxiety, reduce depression, reduce levels of pain.
PF-06651600 is a newly discovered irreversible covalent JAK3-selective inhibitor. A high level of selectivity towards JAK3 is achieved by the covalent interaction of PF-06651600 with a unique cysteine residue (Cys-909) in the catalytic domain of JAK3, which is replaced by a serine residue in the other JAK isoforms. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Preclinical data demonstrates that inhibition of the cytolytic function of CD8+ T cells and NK cells by PF-06651600 is driven by the inhibition of TEC kinases. Based on the underlying pathophysiology of inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, alopecia areata and vitiligo, the dual activity of PF06651600 towards JAK3 and the TEC kinase family may provide a beneficial inhibitory profile for therapeutic intervention. PF-06651600 is in phase III clinical trial for the treatment of alopecia areata and in phase II clinical trial for the treatment of Crohn's disease, Rheumatoid arthritis, Ulcerative colitis and Vitiligo.
Momelotinib (CYT387) is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases. Momelotinib is developing by Gilead Sciences for the oral treatment of pancreatic and non-small cell lung cancers, and myeloproliferative disorders (including myelofibrosis, essential thrombocythaemia and polycythaemia vera).
Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor. It represents an effective therapeutic option for patients with ROS1-, NTRK1-3-, or ALK-rearranged malignancies who have progressed on earlier-generation tyrosine kinase inhibitors. In June 2017, The US Food and Drug Administration (FDA) granted orphan drug designation to this drug for the treatment of Non–small cell lung adenocarcinoma with an ALK, ROS1, or NTRK mutation.
Fruquintinib is a highly selective small molecule drug candidate that has been shown to inhibit VEGFR 24 hours a day via an oral dose, with lower off-target toxicities compared to other targeted therapies. Mechanistically, Fruquintinib selectively blocks VEGF-mediated receptor autophosphorylation, thus inhibiting endothelial cell proliferation and migration. In preclinical in vitro studies using a 32P-ATP assay, Fruquintinib selectively inhibited the tyrosine kinase activity associated with VEGFR-1, VEGFR-2, and VEGFR-3 at concentrations in the nanomolar range, but showed little inhibition against a panel of 254 kinases related to cell cycle or cell proliferation, including cyclin-dependent kinase (CDK1, 2, 5), the epidermal growth factor receptor (EGFR), the mesenchymal-epithelial transition factor (c-Met), and platelet-derived growth factor receptor β (PDGFRβ) kinase. In cellular assays, Fruquintinib potently inhibited VEGF-stimulated VEGFR phosphorylation and proliferation in human umbilical vein endothelial cells. Fruquintinib demonstrated potent antiangiogenic effect and anti-tumor activity in xenograft models of colon adenocarcinoma (HT-29), non-small cell lung cancer (NSCLC; NCI-H460), renal clear cell carcinoma (Caki-1), and gastric carcinoma (BGC823) in mice treated for 3 weeks. Fruquintinib is currently under joint development in China by Chi-Med and its partner Eli Lilly and Company (“Lilly”). Chi-Med and Lilly jointly announced top-line results from the FRESCO CRC trial on March 3, 2017. In addition, Fruquintinib is being studied in China in Phase III pivotal trial in non-small cell lung cancer (“NSCLC”), known as FALUCA; and a Phase II study using Fruquintinib combined with Iressa® (gefitinib) in the first-line setting for patients with advanced or metastatic NSCLC.
Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.
Pacritinib (SB1518), discovered in Singapore at the labs of S*BIO Pte Ltd., is an oral tyrosine kinase inhibitor (TKI) with activity against two important activating mutations: Janus Associated Kinase 2 (JAK2) and FMS-like tyrosine kinase 3 (FLT3). The JAK family of enzymes is a central component in signal transduction pathways, which are critical to normal blood cell growth and development as well as inflammatory cytokine expression and immune responses. Activating mutations of JAK2 are implicated in certain blood-related cancers, including myeloproliferative neoplasms (MPNs), leukemia and certain solid tumors. FLT3 is a gene commonly found mutated in patients with acute myeloid leukemia (AML). Pacritinib has demonstrated encouraging results in Phase 1 and 2 studies for patients with myelofibrosis and may offer an advantage over other JAK inhibitors through effective treatment of symptoms while having less treatment-emergent thrombocytopenia and anemia than has been seen in currently approved and in-development JAK inhibitors. Pacritinib is acquired by Cell Therapeutics, Inc. (CTI) and Baxter international and could effectively address an unmet medical need for patients living with myelofibrosis who face treatment-emergent thrombocytopenia on marketed JAK inhibitors. Currently Pacritinib is undergoing preregistration for myelofibrosis.