U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Momelotinib (CYT387) is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases. Momelotinib is developing by Gilead Sciences for the oral treatment of pancreatic and non-small cell lung cancers, and myeloproliferative disorders (including myelofibrosis, essential thrombocythaemia and polycythaemia vera).
Fruquintinib is a highly selective small molecule drug candidate that has been shown to inhibit VEGFR 24 hours a day via an oral dose, with lower off-target toxicities compared to other targeted therapies. Mechanistically, Fruquintinib selectively blocks VEGF-mediated receptor autophosphorylation, thus inhibiting endothelial cell proliferation and migration. In preclinical in vitro studies using a 32P-ATP assay, Fruquintinib selectively inhibited the tyrosine kinase activity associated with VEGFR-1, VEGFR-2, and VEGFR-3 at concentrations in the nanomolar range, but showed little inhibition against a panel of 254 kinases related to cell cycle or cell proliferation, including cyclin-dependent kinase (CDK1, 2, 5), the epidermal growth factor receptor (EGFR), the mesenchymal-epithelial transition factor (c-Met), and platelet-derived growth factor receptor β (PDGFRβ) kinase. In cellular assays, Fruquintinib potently inhibited VEGF-stimulated VEGFR phosphorylation and proliferation in human umbilical vein endothelial cells. Fruquintinib demonstrated potent antiangiogenic effect and anti-tumor activity in xenograft models of colon adenocarcinoma (HT-29), non-small cell lung cancer (NSCLC; NCI-H460), renal clear cell carcinoma (Caki-1), and gastric carcinoma (BGC823) in mice treated for 3 weeks. Fruquintinib is currently under joint development in China by Chi-Med and its partner Eli Lilly and Company (“Lilly”). Chi-Med and Lilly jointly announced top-line results from the FRESCO CRC trial on March 3, 2017. In addition, Fruquintinib is being studied in China in Phase III pivotal trial in non-small cell lung cancer (“NSCLC”), known as FALUCA; and a Phase II study using Fruquintinib combined with Iressa® (gefitinib) in the first-line setting for patients with advanced or metastatic NSCLC.
Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.
Pacritinib (SB1518), discovered in Singapore at the labs of S*BIO Pte Ltd., is an oral tyrosine kinase inhibitor (TKI) with activity against two important activating mutations: Janus Associated Kinase 2 (JAK2) and FMS-like tyrosine kinase 3 (FLT3). The JAK family of enzymes is a central component in signal transduction pathways, which are critical to normal blood cell growth and development as well as inflammatory cytokine expression and immune responses. Activating mutations of JAK2 are implicated in certain blood-related cancers, including myeloproliferative neoplasms (MPNs), leukemia and certain solid tumors. FLT3 is a gene commonly found mutated in patients with acute myeloid leukemia (AML). Pacritinib has demonstrated encouraging results in Phase 1 and 2 studies for patients with myelofibrosis and may offer an advantage over other JAK inhibitors through effective treatment of symptoms while having less treatment-emergent thrombocytopenia and anemia than has been seen in currently approved and in-development JAK inhibitors. Pacritinib is acquired by Cell Therapeutics, Inc. (CTI) and Baxter international and could effectively address an unmet medical need for patients living with myelofibrosis who face treatment-emergent thrombocytopenia on marketed JAK inhibitors. Currently Pacritinib is undergoing preregistration for myelofibrosis.
ABL-001 (asciminib), a potent and selective allosteric tyrosine-protein kinase ABL1 inhibitor that is undergoing clinical development testing in patients with Chronic myeloid leukemia (CML) and Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia. is a tyrosine-protein kinase ABL1 inhibitor. In contrast to catalytic-site ABL1 kinase inhibitors, ABL001 binds to the myristoyl pocket of ABL1 and induces the formation of an inactive kinase conformation. ABL001 and second-generation catalytic inhibitors have similar cellular potencies but distinct patterns of resistance mutations, with genetic barcoding studies revealing pre-existing clonal populations with no shared resistance between ABL001 and the catalytic inhibitor nilotinib. ABL001 was tested on mice with a particularly aggressive type of CML. The combination of ABL001 and nilotinib led to complete disease control and eradicated CML xenograft tumors without recurrence after the cessation of treatment. ABL001 is being tested in clinical trials for treatment of CML and Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia alone and in combination with niotinib, imatinib or dasatinib.
Tivozanib (formerly AV-951, KRN-951) is a potent and selective VEGFR tyrosine kinase inhibitor and inhibits angiogenesis and vascular permeability in tumor tissues. It completed phase III a trial investigation for the treatment of renal cell carcinomas, but has not been still approved. In addition, this drug is in the phase II of clinical trial for the investigation it in patients with glioblastoma and colorectal carcinoma.

Class (Stereo):
CHEMICAL (ACHIRAL)



Tepotinib is an investigational small molecule inhibitor of the c-Met receptor tyrosine kinase. Alterations of the c-Met signaling pathway are found in various cancer types and correlate with aggressive tumor behavior and poor clinical prognosis. Tepotinib is a potent and selective c-Met inhibitor, >200-fold selective for c-Met than IRAK4, TrkA, Axl, IRAK1, and Mer. Tepotinib is currently in Phase I/II trials in liver cancer and lung cancer.
Capmatinib (INC280, INCB028060), is an orally bioavailable inhibitor of the proto-oncogene c-Met (hepatocyte growth factor receptor [HGFR]) with potential antineoplastic activity. Novartis acquired Incyte's capmatinib, which is in Phase II clinical trial as monotherapy in patients with advanced hepatocellular carcinoma. Capmatinib selectively binds to c-Met, thereby inhibiting c-Met phosphorylation and disrupting c-Met signal transduction pathways. This may induce cell death in tumor cells overexpressing c-Met protein or expressing constitutively activated c-Met protein. c-Met, a receptor tyrosine kinase overexpressed or mutated in many tumor cell types, plays key roles in tumor cell proliferation, survival, invasion, metastasis, and tumor angiogenesis.
Pemigatinib, an oral kinases inhibitor, was approved under the brand name PEMAZYRE for the treatment of adults with previously treated, unresectable locally advanced, or metastatic cholangiocarcinoma with a fibroblast growth factor receptor 2 (FGFR2) fusion. The FDA-approved indication for pemigatinib was granted under accelerated approval based on the overall response rate and duration of response in pre-marketing clinical trials. The drug inhibited FGFR1-3 phosphorylation and signaling and decreased cell viability in cancer cell lines with activating FGFR amplification and fusions that resulted in constitutive activation of FGFR signaling.
TUCATINIB (ONT-380 or ARRY-380) is an orally active, reversible and selective small-molecule HER2 inhibitor invented by Array and licensed to Cascadian Therapeutics (previously named Oncothyreon) for development, manufacturing and commercialization. HER2, a growth factor receptor that is over-expressed in multiple cancers, including breast, ovarian, and stomach cancer. HER2 mediates cell growth, differentiation and survival, and tumors that overexpress HER2 are more aggressive and historically have been associated with poorer overall survival compared with HER2-negative cancers. ONT-380 is highly active as a single agent and in combination with both chemotherapy and Herceptin® (trastuzumab) in xenograft models of HER2+ breast cancer, including models of CNS metastases that were refractory to Tykerb® (lapatinib) or neratinib treatment. In a Phase 1 single agent clinical study, ONT-380 administered orally twice a day was well tolerated and demonstrated anti-tumor activity in heavily pre-treated HER2+ breast cancer patients with metastatic disease. Based on the strength of these preclinical and clinical trials, ONT-380 is advancing in one Phase 2 and three Phase 1b combination trials in patients with metastatic breast cancer. A second study reported the CNS activity of ONT-380 in combination with either T-DM1 or trastuzumab or capecitabine. Patients with brain metastases assessable for response were included in the combined analysis. Responses and clinical benefit in the CNS were reported with the three combinations tested, supporting future development of the drug for this particular indication.