U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 23 results

Status:
First approved in 1996
Source:
MERETEK UBT KIT (W/ PRANACTIN) by OTSUKA AMERICA
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Urea 13C is a urea molecule radiolabelled with the non-radioactive element carbon-13. 13C-urea present in drugs which are intended for use in the qualitative detection of 13CO2 in whole blood specimens, collected after the ingestion of 13C-urea. Helicobacter pylori (H. pylori) organisms colonizing the lining of the human stomach, produce urease which converts 13C-urea into 13CO2 and ammonia (NH4+). In the presence of urease associated with gastric H. pylori, 13C-urea is decomposed to 13CO2 and ammonia NH4. The 13CO2 is absorbed in the blood, then exhaled in the breath. This results in an increase in the ratio of 13CO2 to 12CO2 in a TEST breath sample compared to a BASELINE sample.
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
First approved in 1989

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Carboplatin is an organoplatinum compound that possesses antineoplastic activity. Carboplatin is an intravenously administered platinum coordination complex and alkylating agent, which is used as a chemotherapeutic agent for the treatment of various cancers, mainly of advanced ovarian. Carboplatin is indicated for the palliative treatment of patients with ovarian carcinoma recurrent after prior chemotherapy, including patients who have been previously treated with cisplatin. In addition this drug can be used to treat others cancers. Carboplatin therapy is associated with a low rate of transient serum aminotransferase elevations and with rare instances of clinically apparent liver injury. Carboplatin, like cisplatin, produces predominantly interstrand DNA cross-links rather than DNA-protein cross-links. This effect is apparently cell-cycle nonspecific. The aquation of carboplatin, which is thought to produce the active species, occurs at a slower rate than in the case of cisplatin. Despite this difference, it appears that both carboplatin and cisplatin induce equal numbers of drug-DNA cross-links, causing equivalent lesions and biological effects.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)



Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Status:
First approved in 1975

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Dacarbazine (DTIC), also known as imidazole carboxamide, is an antineoplastic agent, which is used in the treatment of metastatic malignant melanoma. In addition, this drug also is indicated for Hodgkin’s disease as a second-line therapy when used in combination with other effective agents. Dacarbazine works by methylating guanine at the O-6 and N-7 positions. Guanine is one of the four nucleotides that makes up DNA. The alkylated DNA strands stick together such that cell division becomes impossible. This affects cancer cells more than healthy cells because cancer cells divide faster. Dacarbazine is bioactivated in liver by demethylation to "MTIC" and then to diazomethane, which is an alkylating agent. Symptoms of anorexia, nausea, and vomiting are the most frequently noted of all toxic reactions. Over 90% of patients are affected with the initial few doses.
Aldoxorubicin (INNO-206) is a tumor-targeted doxorubicin conjugate developed by CytRx for treating relapsed and refractory sarcomas, especially L-sarcomas. Aldoxorubicin is a rationally-engineered cytotoxic which delivers a well-established anti-cancer agent, doxorubicin, into the tumor. Currently, in late-stage clinical trials, Aldoxorubicin appears to overcome the key limitations of doxorubicin, including cumulative dose restrictions. Aldoxorubicin utilizes an acid-sensitive linker that selectively binds to albumin, which may allow the cytotoxic payload to preferentially accumulate in the tumor and potentially spare the surrounding healthy tissue. This mechanism leverages the tumor's low pH environment and accompanying dependency upon circulating albumin to fuel growth, to enable the delivery of multifold times the standard dosing of doxorubicin. The preferential uptake of Aldoxorubicin by tumor tissue and the acid sensitive release of doxorubicin allow for Aldoxorubicin to be a very promising anticancer agent. In phase I and II trials, Aldoxorubicin demonstrates superior efficacy over doxorubicin. Although the studies were not powered for OS, Aldoxorubicin shows improved PFS and tumor response in comparison to doxorubicin. The safety profile was also comparable to that of doxorubicin. Similarly, results from the recent phase III study showed a benefit in PFS in the leiomyosarcoma subtypes.
Procarbazine is a chemotherapy medication used for the treatment of Hodgkin's lymphoma and brain cancers. For Hodgkin's it is often used together with mechlorethamine, vincristine, and prednisone while for brain cancers such as glioblastoma multiforme it is used with lomustine and vincristine. Procarbazine inhibits DNA, RNA, and protein synthesis by inhibiting transmethylation of methionine into transfer RNA; may also damage DNA directly through alkylation. Common side effect include low blood cell counts and vomiting. Other side effects include tiredness and depression.
Status:
First approved in 1969

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.

Class (Stereo):
CHEMICAL (ACHIRAL)



Allopurinol is a xanthine oxidase inhibitor used to decrease high blood uric acid levels. Allopurinol is specifically used to prevent gout, prevent specific types of kidney stones, and for the high uric acid levels that can occur with chemotherapy. Allopurinol acts on purine catabolism, without disrupting the biosynthesis of purines. It reduces the production of uric acid by inhibiting the biochemical reactions immediately preceding its formation. Allopurinol is a structural analog of the natural purine base, hypoxanthine. It is an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and of xanthine to uric acid, the end product of purine metabolism in man. Allopurinol is metabolized to the corresponding xanthine analog, oxypurinol (Allopurinol), which also is an inhibitor of xanthine oxidase. Allopurinol is taken by mouth or injected into a vein. Common side effects, when used by mouth, include itchiness and rash. Common side effects when used by injection include vomiting and kidney problems.