{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for clofarabine in Note (approximate match)
Showing 1 - 8 of 8 results
Status:
US Approved Rx
(2013)
Source:
ANDA203131
(2013)
Source URL:
First approved in 2006
Source:
DACOGEN by OTSUKA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Decitabine was first synthesized by Pliml and Sorm in the Institute of Organic Chemistry, Czechoslovak Academy of Sciences in 1964. Later, the drug was approved by FDA for the treatment of myelodysplastic syndromes in patients with cancer. Upon administration the decitabine is metabolized to the active phosphorylated metabolite which is incorporated into DNA and thus inhibits DNA methyltransferase (decitabine deplete DNMT1).
Status:
US Approved Rx
(2022)
Source:
ANDA216934
(2022)
Source URL:
First approved in 2005
Source:
NDA021877
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Arranon is a nucleoside metabolic inhibitor indicated for the treatment of patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. It is a purine nucleoside analog converted to its corresponding arabinosylguanine nucleotide triphosphate (araGTP), resulting in inhibition of DNA synthesis and cytotoxicity. Administration of nelarabine in combination with adenosine deaminase inhibitors, such 195 as pentostatin, is not recommended. The most common (≥20%) adverse reactions were: anemia, thrombocytopenia, neutropenia, nausea, diarrhea, vomiting, constipation, fatigue, pyrexia, cough, and dyspnea
Status:
US Approved Rx
(2020)
Source:
NDA214120
(2020)
Source URL:
First approved in 2004
Source:
NDA050794
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Azacitidine (Vidaza; Pharmion), an inhibitor of DNA methylation, was approved by the US FDA for the treatment of myelodysplastic syndromes in May 2004. It is the first drug to be approved by the FDA for treating this rare family of bone-marrow disorders, and has been given orphan-drug status. It is also a pioneering example of an agent that targets 'epigenetic' gene silencing, a mechanism that is exploited by cancer cells to inhibit the expression of genes that counteract the malignant phenotype. VIDAZA is used for the treatment of patients with the following FAB myelodysplastic syndrome (MDS) subtypes: Refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS), refractory anemia with excess blasts (RAEB), refractory anemia with excess blasts in transformation (RAEB-T), and chronic myelomonocytic leukemia (CMMoL). Azacitidine is a pyrimidine nucleoside analog of cytidine. It is believed to exert its antineoplastic effects by causing hypomethylation of DNA and direct cytotoxicity on abnormal hematopoietic cells in the bone marrow. The concentration of azacitidine required for maximum inhibition of DNA methylation in vitro does not cause major suppression of DNA synthesis. Hypomethylation may restore normal function to genes that are critical for differentiation and proliferation. As azacitidine is a ribonucleoside, it incorporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissemble of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity. The cytotoxic effects of azacitidine cause the death of rapidly dividing cells, including cancer cells that are no longer responsive to normal growth control mechanisms. Non-proliferating cells are relatively insensitive to azacitidine.
Status:
US Approved Rx
(2007)
Source:
ANDA078393
(2007)
Source URL:
First approved in 1991
Source:
FLUDARA by GENZYME CORP
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fludarabine or fludarabine phosphate is a chemotherapy drug used in the treatment of hematological malignancies (cancers of blood cells such as leukemias and lymphomas). It is a purine analog, which interferes with DNA synthesis. Fludarabine phosphate is a fluorinated nucleotide analog of the antiviral agent vidarabine, 9-β-D-arabinofuranosyladenine (ara-A), that is relatively resistant to deamination by adenosine deaminase. Fludarabine (marketed as fludarabine phosphate under the trade name Fludara) is a chemotherapy drug used in the treatment of hematological malignancies. Fludarabine phosphate is rapidly dephosphorylated to 2-fluoro-ara-A and then phosphorylated intracellularly by deoxycytidine kinase to the active triphosphate, 2-fluoro-ara-ATP. This metabolite appears to act by inhibiting DNA polymerase alpha, ribonucleotide reductase and DNA primase, thus inhibiting DNA synthesis. The mechanism of action of this antimetabolite is not completely characterized and may be multi-faceted.
Status:
US Approved Rx
(1990)
Source:
ANDA071868
(1990)
Source URL:
First approved in 1969
Source:
CYTARABINE by TEVA PARENTERAL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.
Status:
US Approved Rx
(2017)
Source:
ANDA203385
(2017)
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dactinomycin (actinomycin D) was isolated from Streptomyces by Selman Waksman in 1940s. The antibiotic shows anti-cancer activity; it was approved by FDA for the treatment of different cancer conditions among which are Ewing's sarcoma, Wilm's tumor, gestational trophoblastic disease, etc. Dactinomycin exerts its action by binding to DNA (preferably to GC motif) and thus inhibiting transcription.
Status:
US Approved Rx
(2011)
Source:
NDA200795
(2011)
Source URL:
First approved in 1996
Source:
GEMZAR by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Gemcitabine is a nucleoside analog used as chemotherapy. It is marketed as Gemzar® by Eli Lilly and Company. Gemcitabine inhibits thymidylate synthetase, leading to inhibition of DNA synthesis and cell death. Gemcitabine is a prodrug so activity occurs as a result of intracellular conversion to two active metabolites, gemcitabine diphosphate and gemcitabine triphosphate by deoxycitidine kinase. Gemcitabine diphosphate also inhibits ribonucleotide reductase, the enzyme responsible for catalyzing synthesis of deoxynucleoside triphosphates required for DNA synthesis. Finally, Gemcitabine triphosphate (diflurorodeoxycytidine triphosphate) competes with endogenous deoxynucleoside triphosphates for incorporation into DNA. Gemcitabine is indicated for the treatment of advanced ovarian cancer that has relapsed at least 6 months after completion of platinum-based therapy; metastatic ovarian cancer; inoperable, locally advanced (Stage IIIA or IIIB), or metastatic (Stage IV) non-small cell lung cancer; and locally advanced (nonresectable Stage II or Stage III) or metastatic (Stage IV) adenocarcinoma of the pancreas.