U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Torasemide is a pyridine-sulfonylurea type loop diuretic mainly used for the treatment of edema associated with congestive heart failure, renal disease, or hepatic disease. Also for the treatment of hypertension alone or in combination with other antihypertensive agents. It is also used at low doses for the management of hypertension. It is marketed under the brand name Demadex. Torasemide inhibits the Na+/K+/2Cl--carrier system (via interference of the chloride binding site) in the lumen of the thick ascending portion of the loop of Henle, resulting in a decrease in reabsorption of sodium and chloride. This results in an increase in the rate of delivery of tubular fluid and electrolytes to the distal sites of hydrogen and potassium ion secretion, while plasma volume contraction increases aldosterone production. The increased delivery and high aldosterone levels promote sodium reabsorption at the distal tubules, and by increasing the delivery of sodium to the distal renal tubule, torasemide indirectly increases potassium excretion via the sodium-potassium exchange mechanism. Torasemide's effects in other segments of the nephron have not been demonstrated. Thus torasemide increases the urinary excretion of sodium, chloride, and water, but it does not significantly alter glomerular filtration rate, renal plasma flow, or acid-base balance. Torasemide's effects as a antihypertensive are due to its diuretic actions. By reducing extracellular and plasma fluid volume, blood pressure is reduced temporarily, and cardiac output also decreases.
Bumetanide is indicated for the treatment of edema associated with congestive heart failure, hepatic and renal disease, including the nephrotic syndrome. It blocks the reabsorption of sodium and fluid from the kidney's tubules. The most frequent clinical adverse reactions considered probably or possibly related to bumetanide are muscle cramps (seen in 1.1% of treated patients), dizziness (1.1%), hypotension (0.8%), headache (0.6%), nausea (0.6%) and encephalopathy (in patients with preexisting liver disease) (0.6%). One or more of these adverse reactions have been reported in approximately 4.1% of patients treated with Bumex (bumetanide). Lithium should generally not be given with diuretics (such as Bumex (bumetanide)) because they reduce its renal clearance and add a high risk of lithium toxicity. Bumex (bumetanide) may potentiate the effect of various antihypertensive drugs, necessitating a reduction in the dosage of these drugs.
Indapamide is an antihypertensive and a diuretic. It contains both a polar sulfamoyl chlorobenzamide moiety and a lipid- soluble methylindoline moiety. Indapamide blocks the slow component of delayed rectifier potassium current (IKs) without altering the rapid component (IKr) or the inward rectifier current. Specifically it blocks or antagonizes the action the proteins KCNQ1 and KCNE1. Indapamide is also thought to stimulate the synthesis of the vasodilatory hypotensive prostaglandin PGE2. Indapamide is used for the treatment of hypertension, alone or in combination with other antihypertensive drugs, as well as for the treatment of salt and fluid retention associated with congestive heart failure or edema from pregnancy (appropriate only in the management of edema of pathologic origin during pregnancy when clearly needed). Also used for the management of edema as a result of various causes.
Amiloride, an antikaliuretic-diuretic agent, is a pyrazine-carbonyl-guanidine that is unrelated chemically to other known antikaliuretic or diuretic agents. It is an antihypertensive, potassium-sparing diuretic that was first approved for use in 1967 and helps to treat hypertension and congestive heart failure. The drug is often used in conjunction with thiazide or loop diuretics. Due to its potassium-sparing capacities, hyperkalemia (high blood potassium levels) are occasionally observed in patients taking amiloride. Amiloride works by inhibiting sodium reabsorption in the distal convoluted tubules and collecting ducts in the kidneys by binding to the amiloride-sensitive sodium channels. This promotes the loss of sodium and water from the body, but without depleting potassium. It is used for as adjunctive treatment with thiazide diuretics or other kaliuretic-diuretic agents in congestive heart failure or hypertension.
Metolazone is a thiazide-like diuretic marketed under the brand names Mykrox and Zaroxolyn. Zaroxolyn is indicated for the treatment of salt and water retention including: • Edema accompanying congestive heart failure; • Edema accompanying renal diseases including the nephrotic syndrome and states of diminished renal function. Zaroxolyn is also indicated for the treatment of hypertension, alone or in combination with other antihypertensive drugs of a different class. Metolazone is a quinazoline diuretic, with properties generally similar to the thiazide diuretics. The actions of Metolazone result from interference with the renal tubular mechanism of electrolyte reabsorption. Metolazone acts primarily to inhibit sodium reabsorption at the cortical diluting site and to a lesser extent in the proximal convoluted tubule. Sodium and chloride ions are excreted in approximately equivalent amounts. The increased delivery of sodium to the distal tubular exchange site results in increased potassium excretion. Metolazone does not inhibit carbonic anhydrase. A proximal action of Metolazone has been shown in humans by increased excretion of phosphate and magnesium ions and by a markedly increased fractional excretion of sodium in patients with severely compromised glomerular filtration. This action has been demonstrated in animals by micropuncture studies.
Ethacrynic acid is a monosulfonamyl loop or high ceiling diuretic. Ethacrynic acid acts on the ascending limb of the loop of Henle and on the proximal and distal tubules. Urinary output is usually dose dependent and related to the magnitude of fluid accumulation. Water and electrolyte excretion may be increased several times over that observed with thiazide diuretics, since ethacrynic acid inhibits reabsorption of a much greater proportion of filtered sodium than most other diuretic agents. Therefore, ethacrynic acid is effective in many patients who have significant degrees of renal insufficiency. Ethacrynic acid has little or no effect on glomerular filtration or on renal blood flow, except following pronounced reductions in plasma volume when associated with rapid diuresis. Ethacrynic acid inhibits symport of sodium, potassium, and chloride primarily in the ascending limb of Henle, but also in the proximal and distal tubules. This pharmacological action results in excretion of these ions, increased urinary output, and reduction in extracellular fluid. Diuretics also lower blood pressure initially by reducing plasma and extracellular fluid volume; cardiac output also decreases, explaining its antihypertensive action. Eventually, cardiac output returns to normal with an accompanying decrease in peripheral resistance. Its mode of action does not involve carbonic anhydrase inhibition. Ethacrynic acid is indicated for the treatment of high blood pressure and edema caused by diseases like congestive heart failure, liver failure, and kidney failure.
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Triamterene, a relatively weak, potassium-sparing diuretic and antihypertensive, is used in the management of hypokalemia. Triamterene inhibits the epithelial sodium channels on principal cells in the late distal convoluted tubule and collecting tubule, which are responsible for 1-2% of total sodium reabsorption. As sodium reabsorption is inhibited, this increases the osmolarity in the nephron lumen and decreases the osmolarity of the interstitium. Since sodium concentration is the main driving force for water reabsorption, triamterene can achieve a modest amount of diuresis by decreasing the osmotic gradient necessary for water reabsorption from lumen to interstitium. Triamterene also has a potassium-sparing effect. Normally, the process of potassium excretion is driven by the electrochemical gradient produced by sodium reabsorption. As sodium is reabsorbed, it leaves a negative potential in the lumen, while producing a positive potential in the principal cell. This potential promotes potassium excretion through apical potassium channels. By inhibiting sodium reabsorption, triamterene also inhibits potassium excretion.Triamterene is used for the treatment of edema associated with congestive heart failure, cirrhosis of the liver, and the nephrotic syndrome; also in steroid-induced edema, idiopathic edema, and edema due to secondary hyperaldosteronism. Triamterene is maeketed under the trade name Dyrenium.
Spironolactone is a synthetic 17-lactone steroid which is a renal competitive aldosterone antagonist in a class of pharmaceuticals called potassium-sparing diuretics. On its own, spironolactone is only a weak diuretic, but it can be combined with other diuretics. Due to its anti-androgen effect, it can also be used to treat hirsutism, and is a common component in hormone therapy for male-to-female transgendered people. Spironolactone inhibits the effect of aldosterone by competing for intracellular aldosterone receptor in the distal tubule cells. This increases the secretion of water and sodium, while decreasing the excretion of potassium. Spironolactone has a fairly slow onset of action, taking several days to develop and similarly the effect diminishes slowly. Spironolactone is a specific pharmacologic antagonist of aldosterone, acting primarily through competitive binding of receptors at the aldosterone-dependent sodium-potassium exchange site in the distal convoluted renal tubule. Spironolactone causes increased amounts of sodium and water to be excreted, while potassium is retained. Spironolactone acts both as a diuretic and as an antihypertensive drug by this mechanism. It may be given alone or with other diuretic agents which act more proximally in the renal tubule. Aldosterone interacts with a cytoplasmic mineralocorticoid receptor to enhance the expression of the Na+, K+-ATPase and the Na+ channel involved in a Na+ K+ transport in the distal tubule . Spironolactone bind to this mineralcorticoid receptor, blocking the actions of aldosterone on gene expression. Aldosterone is a hormone; its primary function is to retain sodium and excrete potassium in the kidneys. Spironolactone is used primarily to treat low-renin hypertension, hypokalemia, and Conn's syndrome.
Status:
First approved in 1960

Class (Stereo):
CHEMICAL (RACEMIC)



Chlorthalidone is a diuretic that is used for the treatment of hypertansion and edema. The drug is approved by FDA and either prescribed alone (Chlorthalidone trade name) or in combination with atenolol (Tenoretic trade name), azilsartan kamedoxomil (Edarbyclor) and clonidin (Clorpres). The mechanism of action is associated with activation of sodium and chloride renal excretion.