U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 32 results

Mitapivat (AG-348; PKM2 activator 1020) is a novel, first-in-class oral small molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and the thalassemias. Mitapivat was approved for the treatment of hemolytic anemia in adults with pyruvate kinase (PK) deficiency in the United States in February 2022, and in the European Union in November 2022.
Status:
First approved in 2006

Class (Stereo):
CHEMICAL (ABSOLUTE)



Decitabine was first synthesized by Pliml and Sorm in the Institute of Organic Chemistry, Czechoslovak Academy of Sciences in 1964. Later, the drug was approved by FDA for the treatment of myelodysplastic syndromes in patients with cancer. Upon administration the decitabine is metabolized to the active phosphorylated metabolite which is incorporated into DNA and thus inhibits DNA methyltransferase (decitabine deplete DNMT1).
Rifaximin is a structural analog of rifampin and a non-systemic, gastrointestinal site-specific antibiotic. Rifaximin acts by inhibiting bacterial ribonucleic acid (RNA) synthesis and contributes to restore intestinal microflora imbalance. It is FDA approved for the treatment of travelers’ diarrhea, reduction in risk of overt hepatic encephalopathy (HE) recurrence and treatment of irritable bowel syndrome with diarrhea. More common side effects are: black, tarry stools; dizziness or lightheadedness; muscle spasm; rapid breathing; shortness of breath; trouble sleeping. Co-administration of cyclosporine, with XIFAXAN resulted in 83-fold and 124-fold increases in rifaximin mean Cmax in healthy subjects.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. It is used in medicine to prevent organ transplant rejection and to treat lymphangioleiomyomatosis. Sirolimus inhibits T-lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (Interleukin [IL]-2, IL-4, and IL-15) stimulation by a mechanism that is distinct from that of other immunosuppressants. Sirolimus also inhibits antibody production. In cells, sirolimus binds to the immunophilin, FK Binding Protein-12 (FKBP-12), to generate an immunosuppressive complex. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Studies in experimental models show that sirolimus prolongs allograft (kidney, heart, skin, islet, small bowel, pancreatico-duodenal, and bone marrow) survival in mice, rats, pigs, and/or primates. Sirolimus reverses acute rejection of heart and kidney allografts in rats and prolongs the graft survival in presensitized rats. In some studies, the immunosuppressive effect of sirolimus lasts up to 6 months after discontinuation of therapy. This tolerization effect is alloantigen-specific. In rodent models of autoimmune disease, sirolimus suppresses immune-mediated events associated with systemic lupus erythematosus, collagen-induced arthritis, autoimmune type I diabetes, autoimmune myocarditis, experimental allergic encephalomyelitis, graft-versus-host disease, and autoimmune uveoretinitis. Lymphangioleiomyomatosis involves lung tissue infiltration with smooth muscle-like cells that harbor inactivating mutations of the tuberous sclerosis complex (TSC) gene (LAM cells). Loss of TSC gene function activates the mTOR signaling pathway, resulting in cellular proliferation and release of lymphangiogenic growth factors. Sirolimus inhibits the activated mTOR pathway and thus the proliferation of LAM cells.
Status:
US Approved OTC
Source:
21 CFR 333.210(g) antifungal clotrimazole
Source URL:
First approved in 1975

Class (Stereo):
CHEMICAL (ACHIRAL)



Clotrimazole is an anti-fungal medicine indicated for the treatment of vaginal yeast infections and tinea. It can be used either in combination with other drugs (betamethasone dipropionate) or alone, in form of topical or vaginal cream. The drug exerts its action by inhibiting lanosterol demethylase thereby affecting the growth of fungi.
Status:
Investigational
Source:
INN:pociredir [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:osivelotor [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:etavopivat [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT03414541: Phase 2 Interventional Completed Chronic Obstructive Pulmonary Disease
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT01871142: Phase 1/Phase 2 Interventional Completed Hypoxia
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

5-(hydroxymethyl)-2-furaldehyde (5-Hydroxymethyl-2-furancarboxaldehyde, 5‐hydroxymethyl‐2‐furfural) is found in garden onion. It is obtainable from various carbohydrates. 5-Hydroxymethyl-2-furancarboxaldehyde is present in tomatoes, tobacco oil etc. It is a constituent of numerous plant species. 5-Hydroxymethyl-2-furancarboxaldehyde is used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. The heterocyclic aldehyde 5‐hydroxymethyl‐2‐furfural (5HMF, Aes‐103, BAX 555) interacts allosterically with the abnormal form of haemoglobin (Hb), HbS, in red blood cells (RBCs) from patients with sickle cell disease (SCD), thereby increasing oxygen affinity and decreasing HbS polymerization and RBC sickling during hypoxia. 5HMF markedly reduced the deoxygenation-induced dehydration of RBCs whether in response to maintained deoxygenation or to cyclical deoxygenation/re-oxygenation. 5HMF was found to inhibit Psickle, an effect which correlated with its effects on sickling. Deoxygenation-induced activation of the Gardos channel and exposure of phosphatidylserine were also inhibited, probably indirectly via reduced entry of Ca(2+) through the Psickle pathway. Effects of 5HMF on KCC were more modest with a slight inhibition in N-ethylmaleimide (NEM, 1 mm)-treated RBCs and stimulation in RBCs untreated with NEM. These findings support the hypothesis that 5HMF may also be beneficial through effects on RBC ion and water homeostasis. AesRx is developing Aes-103 as an orally bioavailable, chronic therapy for SCD. Aes‐103 is currently in phase II clinical trials in SCD patients in the USA and UK. Aes-103 has received orphan designation from the US Food and Drug Administration and is eligible for orphan status in Europe.