{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "LiverTox|Immunomodulatory" in comments (approximate match)
Status:
US Approved Rx
(2020)
Source:
NDA213082
(2020)
Source URL:
First approved in 2012
Source:
NDA203214
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tofacitinib is an orally available inhibitor of Janus kinases (JAK), with immunomodulatory and anti-inflammatory activities. Upon administration, tofacitinib binds to JAK and prevents the activation of the JAK-signal transducers and activators of transcription (STAT) signaling pathway. This may decrease the production of pro-inflammatory cytokines, such as interleukin (IL)-6, -7, -15, -21, interferon-alpha and -beta, and may prevent both an inflammatory response and the inflammation-induced damage caused by certain immunological diseases. JAK kinases are intracellular enzymes involved in signaling pathways affecting hematopoiesis, immunity and inflammation. Tofacitinib was discovered and developed by the National Institutes of Health and Pfizer. Besides rheumatoid arthritis, tofacitinib has also been studied in clinical trials for the prevention of organ transplant rejection, and the treatment of psoriasis and ulcerative colitis. Patients treated with tofacitinib (XELJANZ) are at increased risk for developing serious infections that may lead to hospitalization or death and adverse reactions. Most patients who developed these infections were taking concomitant immunosuppressants such as methotrexate or corticosteroids.
Status:
US Approved Rx
(2021)
Source:
ANDA207939
(2021)
Source URL:
First approved in 2010
Source:
NDA022527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fingolimod (FTY720) is a sphingosine 1-phosphate receptor modulator indicated and approved for the treatment of relapsing-remitting multiple sclerosis. Fingolimod (trade name Gilenya, Novartis) is metabolized by sphingosine kinase to the active metabolite, fingolimod-phosphate. Fingolimod-phosphate
is a sphingosine 1-phosphate receptor modulator, and binds with high affinity to sphingosine 1-phosphate receptors 1, 3,
4, and 5. Fingolimod-phosphate blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of
lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is
unknown, but may involve reduction of lymphocyte migration into the central nervous system. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials.
Status:
US Approved Rx
(2021)
Source:
ANDA205775
(2021)
Source URL:
First approved in 2009
Source:
NDA022334
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Everolimus is a derivative of Rapamycin (sirolimus), it is a mTOR inhibitor that binds with high affinity to the FK506 binding protein-12 (FKBP-12), thereby forming a drug complex that inhibits the activation of mTOR. This inhibition reduces the activity of effectors downstream, which leads to a blockage in the progression of cells from G1 into S phase, and subsequently inducing cell growth arrest and apoptosis. Everolimus also inhibits the expression of hypoxia-inducible factor, leading to a decrease in the expression of vascular endothelial growth factor. The result of everolimus inhibition of mTOR is a reduction in cell proliferation, angiogenesis, and glucose uptake. Everolimus is indicated for the treatment of postmenopausal women with advanced hormone receptor-positive, HER2-negative breast cancer (advanced HR+ BC) in combination with exemestane, after failure of treatment with letrozole or anastrozole. Indicated for the treatment of adult patients with progressive neuroendocrine tumors of pancreatic origin (PNET) with unresectable, locally advanced or metastatic disease. Indicated for the treatment of adult patients with advanced renal cell carcinoma (RCC) after failure of treatment with sunitinib or sorafenib. Indicated for the treatment of adult patients with renal angiomyolipoma and tuberous sclerosis complex (TSC), not requiring immediate surgery. Indicated in pediatric and adult patients with tuberous sclerosis complex (TSC) for the treatment of subependymal giant cell astrocytoma (SEGA) that requires therapeutic intervention but cannot be curatively resected. Everolimus is marketed by Novartis under the tradenames Zortress (USA) and Certican (Europe and other countries) in transplantation medicine, and as Afinitor (general tumours) and Votubia (tumours as a result of TSC) in oncology. Everolimus is also available from Biocon, with the brand name Evertor, from Natco Pharma, with the brand name Temonat, from Ranbaxy Laboratories, with the brand name of Imozide, from Emcure Pharmaceuticals, with the brand name of Temcure, among over 20 different brands.
Status:
US Approved Rx
(2019)
Source:
ANDA211040
(2019)
Source URL:
First approved in 1999
Source:
NDA021083
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. It is used in medicine to prevent organ transplant rejection and to treat lymphangioleiomyomatosis. Sirolimus inhibits T-lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (Interleukin [IL]-2, IL-4, and IL-15) stimulation by a mechanism that is distinct from that of other immunosuppressants. Sirolimus also inhibits antibody production. In cells, sirolimus binds to the immunophilin, FK Binding Protein-12 (FKBP-12), to generate an immunosuppressive complex. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Studies in experimental models show that sirolimus prolongs allograft (kidney, heart, skin, islet, small bowel, pancreatico-duodenal, and bone marrow) survival in mice, rats, pigs, and/or primates. Sirolimus reverses acute rejection of heart and kidney allografts in rats and prolongs the graft survival in presensitized rats. In some studies, the immunosuppressive effect of sirolimus lasts up to 6 months after discontinuation of therapy. This tolerization effect is alloantigen-specific. In rodent models of autoimmune disease, sirolimus suppresses immune-mediated events associated with systemic lupus erythematosus, collagen-induced arthritis, autoimmune type I diabetes, autoimmune myocarditis, experimental allergic encephalomyelitis, graft-versus-host disease, and autoimmune uveoretinitis. Lymphangioleiomyomatosis involves lung tissue infiltration with smooth muscle-like cells that harbor inactivating mutations of the tuberous sclerosis complex (TSC) gene (LAM cells). Loss of TSC gene function activates the mTOR signaling pathway, resulting in cellular proliferation and release of lymphangiogenic growth factors. Sirolimus inhibits the activated mTOR pathway and thus the proliferation of LAM cells.
Status:
US Approved Rx
(2024)
Source:
NDA216482
(2024)
Source URL:
First approved in 1995
Source:
NDA050722
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mycophenolic acid (MPA) possesses antibacterial, antifungal, antiviral, immunosuppressive and anticancer properties. Mycophenolic acid (MPA) is a fungal metabolite that was initially discovered by Bartolomeo Gosio in 1893 as an antibiotic against anthrax bacillus, Bacillus anthracis. It is an uncompetitive and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), and therefore inhibits the de novo pathway of guanosine nucleotide synthesis without incorporation to DNA. It was approved under the brand name Myfortic for the prophylaxis of organ rejection in adult patients receiving a kidney transplant and is indicated for the prophylaxis of organ rejection in pediatric patients 5 years of age and older who are at least 6 months post kidney transplant. Myfortic is to be used in combination with cyclosporine and corticosteroids.
Status:
US Approved Rx
(2024)
Source:
ANDA209811
(2024)
Source URL:
First approved in 1983
Source:
NDA050573
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cyclosporins are cyclic polypeptide macrolides that were originally derived from the soil fungus Tolypocladium inflatum. Cyclosporine (also known as cyclosporine A) was discovered by Sandoz and developed for the tretment of immune disorders. The drug was approved by FDA for such diseases as Rheumatoid Arthritis, Psoriasis (Neoral), Keratoconjunctivitis sicca (Restasis) and prevention of transplant rejections (Neoral and Sandimmune). Cyclosporine’s primary immunosuppressive mechanism of action is inhibition of T-lymphocyte function. Upon administration cyclosporine binds to cyclophilin A and thus inhibits calcineurin, leading to immune system suppression.
Status:
US Approved Rx
(1999)
Source:
ANDA075568
(1999)
Source URL:
First approved in 1968
Source:
NDA016324
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Azathioprine remains one of the most important and widely prescribed drugs for immunosuppression/immunomodulation in autoimmune disease over 30 years after its introduction. Azathioprine is licensed for the treatment of only a limited range of autoimmune disorders, which is probably a reflection on the age of the drug. Widening the license for a drug is both costly and time consuming, and it would make no commercial sense for manufacturers to do so, at this late stage of life, for azathioprine. However, azathioprine is now so well established as an immunomodulating drug in autoimmune disorders that it represents the gold standard by which other drugs are compared. Azathioprine is indicated as an adjunct for the prevention of rejection in renal homotransplantation. It is also indicated for the management of active rheumatoid arthritis to reduce signs and symptoms. The combined use of azathioprine tablets with disease modifying anti-rheumatic drugs (DMARDs) has not been studied for either added benefit or unexpected adverse effects. The use of azathioprine tablets with these agents cannot be recommended. Azathioprine is a pro-drug, converted in the body to the active metabolite 6-mercaptopurine. Azathioprine acts to inhibit purine synthesis necessary for the proliferation of cells, especially leukocytes and lymphocytes. It is a safe and effective drug used alone in certain autoimmune diseases, or in combination with other immunosuppressants in organ transplantation. Its most severe side effect is bone marrow suppression, and it should not be given in conjunction with purine analogues such as allopurinol. The enzyme thiopurine S-methyltransferase (TPMT) deactivates 6-mercaptopurine. Genetic polymorphisms of TPMT can lead to excessive drug toxicity, thus assay of serum TPMT may be useful to prevent this complication. Azathioprine is metabolized to 6-mercaptopurine (6-MP). Both compounds are rapidly eliminated from blood and are oxidized or methylated in erythrocytes and liver; no azathioprine or mercaptopurine is detectable in urine after 8 hours. Activation of 6-mercaptopurine occurs via hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and a series of multi-enzymatic processes involving kinases to form 6-thioguanine nucleotides (6-TGNs) as major metabolites.
Status:
US Approved Rx
(2013)
Source:
BLA125472
(2013)
Source URL:
First approved in 2010
Source:
BLA125276
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2024)
Source:
BLA761425
(2024)
Source URL:
First approved in 2009
Source:
BLA125261
Source URL:
Class:
PROTEIN
Status:
US Approved Rx
(2013)
Source:
BLA125433
(2013)
Source URL:
First approved in 2009
Source:
BLA125289
Source URL:
Class:
PROTEIN