U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 81 - 90 of 10582 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Status:
First approved in 1985

Class (Stereo):
CHEMICAL (ABSOLUTE)



CLOBETASOL, a derivative of prednisolone with high glucocorticoid activity and low mineralocorticoid activity. Absorbed through the skin faster than fluocinonide, it is used topically in the treatment of psoriasis but may cause marked adrenocortical suppression. For short-term topical treatment of the inflammatory and pruritic manifestations of moderate to severe corticosteroid-responsive dermatoses of the scalp. Like other topical corticosteroids, clobetasol has anti-inflammatory, antipruritic, and vasoconstrictive properties. It is a very high potency topical corticosteroid that should not be used with occlusive dressings. Topical corticosteroids share anti-inflammatory, antipruritic, and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of topical steroids is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, however, clobetasol, like other corticosteroids, bind to the glucocorticoid receptor, which complexes, enters the cell nucleus and modifies genetic transcription (transrepression/transactivation).
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Ribavirin is a synthetic nucleoside analogue, which was first discovered and developed in 1970 by researchers from the International Chemical & Nuclear Corporation (ICN), today known as Valeant Pharmaceuticals. Ribavirin was initially approved for use in humans to treat pediatric respiratory syncytial virus infections (RSV). In cell cultures the inhibitory activity of ribavirin for RSV is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites. There were no other significant advancements in the treatment of hepatitis C until 1998, when the combination of ribavirin and interferon-alpha gained approval. Clinically, ribavirin showed a small, additive antiviral effect in combination with interferon, but its main effect was dose-dependent prevention of virological relapse. The mechanism by which the combination of ribavirin and an interferon product exerts its effects against the hepatitis C virus has not been fully established. However, it could be thorough the inhibition of inosine monophosphate dehydrogenase (IMPDH), which is the key step in de novo guanine synthesis, a requirement for viral replication.
Auranofin (brand name Ridaura) is an organogold compound classified by the World Health Organization as an antirheumatic agent. Ridaura is indicated in the management of adults with active classical or definite rheumatoid arthritis (ARA criteria) who have had an insufficient therapeutic response to, or are intolerant of, an adequate trial of full doses of one or more nonsteroidal anti-inflammatory drugs. The mechanism of action of is not understood. In patients with adult rheumatoid arthritis, it may modify disease activity as manifested by synovitis and associated symptoms, and reflected by laboratory parameters such as ESR. There is no substantial evidence, however, that gold-containing compounds induce remission of rheumatoid arthritis. It may act as an inhibitor of kappab kinase and thioredoxin reductase, which would lead to a decreased immune response and decreased free radical production, respectively. In patients with inflammatory arthritis, such as adult and juvenile rheumatoid arthritis, gold salts can decrease the inflammation of the joint lining. This effect can prevent destruction of bone and cartilage. Ridaura should be added to a comprehensive baseline program, including non-drug therapies. Unlike anti-inflammatory drugs, RIDAURA does not produce an immediate response. Therapeutic effects may be seen after three to four months of treatment, although improvement has not been seen in some patients before six months.
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Nicotine is a natural alkaloid obtained from the dried leaves and stems of the nightshade family of pants, such as Nicotiana tabacum and Nicotiana rustica, where it occurs in concentrations of 0.5-8%. Cigarette tobacco varies in its nicotine content, but common blends contain 15-25 mg per cigarette, with a current trend towards lower levels. Nicotine is highly addictive substance, it exhibits a stimulant effect when adsorbed at 2 mg. Administration of higher doses could be harmful. Action of nicotine is mediated by nicotinic cholinergic receptors. Nicotine binds to the interface between two subunits of the receptors, opens the channel and allows the entry of sodium or calcium. The principal mediator of nicotine dependence is α4β2 nicotine receptor.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)



Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
First approved in 1982

Class (Stereo):
CHEMICAL (ABSOLUTE)



Alclometasone is synthetic glucocorticoid steroid for topical use. Alclometasone dipropionate cream USP and alclometasone dipropionate ointment USP are indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. It may be used in pediatric patients 1 year of age or older, although the safety and efficacy of drug use for longer than 3 weeks have not been established. Like other topical corticosteroids, alclometasone dipropionate has anti-inflammatory, antipruritic, and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of the topical steroids, in general, is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Alclometasone initially binds the corticosteroid receptor. This complex migrates to the nucleus where it binds to different glucocorticoid response elements on the DNA. This in turn enhances and represses various genes, especially those involved in inflammatory pathways.