{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ATC|ALIMENTARY TRACT AND METABOLISM" in comments (approximate match)
Status:
US Approved Rx
(2000)
Source:
ANDA075271
(2000)
Source URL:
First approved in 1973
Source:
INTAL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Cromolyn is a mast cell stabilizer. In vitro and in vivo animal studies have shown that cromolyn sodium inhibits the degranulation of sensitized mast cells, which occurs after exposure to specific antigens. Cromolyn sodium acts by inhibiting the release of histamine and SRS-A (slow-reacting substance of anaphylaxis) from the mast cell. Cromolyn is indicated in the management of patients with mastocytosis, prophylaxis (long-term control) of bronchial asthma, prevention of exercise-induced bronchospasm, prevention and treatment of seasonal and perennial allergic rhinitis The most frequently reported adverse reactions attributed to cromolyn sodium treatment were: throat irritation or dryness, bad taste, cough, wheeze, nausea.
Status:
US Approved Rx
(2020)
Source:
NDA212102
(2020)
Source URL:
First approved in 1973
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Fenfluramine (former brand names Pondimin, Ponderax and Adifax), also known as 3-trifluoromethyl-N-ethylamphetamine, is an anorectic that is no longer marketed. In combination with phentermine, it was part of the anti-obesity medication Fen-phen. Fenfluramine was introduced on the U.S. market in 1973 and withdrawn in 1997. It is the racemic mixture of two enantiomers, dexfenfluramine, and levofenfluramine. The drug increases the level of serotonin, a neurotransmitter that regulates mood, appetite and other functions. Fenfluramine causes the release of serotonin by disrupting vesicular storage of the neurotransmitter and reversing serotonin transporter function. The drug was withdrawn from the U.S. market in 1997 after reports of heart valve disease and pulmonary hypertension, including a condition known as cardiac fibrosis. It was subsequently withdrawn from other markets around the world. In this small exploratory and retrospective study, remarkably good results were reported on the use of fenfluramine as an add-on medication for controlling seizures in patients with the Dravet syndrome. The side effects were rare and nonserious and did not result in termination of the treatment. It is possible that this drug may have anticonvulsive effects for other severe epilepsy syndromes, especially in those characterized by photosensitive or induced seizures.
Status:
US Approved Rx
(2017)
Source:
ANDA207634
(2017)
Source URL:
First approved in 1971
Source:
NARCAN by ADAPT
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Naloxone, sold under the brand name Narcan among others, is a medication used to block the effects of opioids, especially in overdose. Naloxone has an extremely high affinity for μ-opioid receptors in the central nervous system (CNS). Naloxone is a μ-opioid receptor (MOR) inverse agonist, and its rapid blockade of those receptors often produces rapid onset of withdrawal symptoms. Naloxone also has an antagonist action, though with a lower affinity, at κ- (KOR) and δ-opioid receptors (DOR). If administered in the absence of concomitant opioid use, no functional pharmacological activity occurs (except the inability for the body to combat pain naturally). In contrast to direct opiate agonists, which elicit opiate withdrawal symptoms when discontinued in opiate-tolerant people, no evidence indicates the development of tolerance or dependence on naloxone. The mechanism of action is not completely understood, but studies suggest it functions to produce withdrawal symptoms by competing for opiate receptor sites within the CNS (a competitive antagonist, not a direct agonist), thereby preventing the action of both endogenous and xenobiotic opiates on these receptors without directly producing any effects itself. When administered parenterally (e.g. intravenously or by injection), as is most common, naloxone has a rapid distribution throughout the body. The mean serum half-life has been shown to range from 30 to 81 minutes, shorter than the average half-life of some opiates, necessitating repeat dosing if opioid receptors must be stopped from triggering for an extended period. Naloxone is primarily metabolized by the liver. Its major metabolite is naloxone-3-glucuronide, which is excreted in the urine. Naloxone is useful both in acute opioid overdose and in reducing respiratory or mental depression due to opioids. Whether it is useful in those in cardiac arrest due to an opioid overdose is unclear. Naloxone is poorly absorbed when taken by mouth, so it is commonly combined with a number of oral opioid preparations, including buprenorphine and pentazocine, so that when taken orally, just the opioid has an effect, but if misused by injecting, the naloxone blocks the effect of the opioid. In a meta-analysis of people with shock, including septic, cardiogenic, hemorrhagic, or spinal shock, those who received naloxone had improved blood flow. Naloxone is also experimentally used in the treatment for congenital insensitivity to pain with anhidrosis, an extremely rare disorder (one in 125 million) that renders one unable to feel pain or differentiate temperatures. Naloxone can also be used as an antidote in overdose of clonidine, a medication that lowers blood pressure.
Status:
US Approved Rx
(2019)
Source:
ANDA211343
(2019)
Source URL:
First approved in 1967
Source:
NDA050007
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Doxycycline is an antibacterial drug synthetically derived from oxytetracycline and used to treat a wide variety of bacterial infections, including those that cause acne. Doxycycline is used for bacterial pneumonia, acne, chlamydia infections, early Lyme disease, cholera, and syphilis. It is also useful for the treatment of malaria when used with quinine and for the prevention of malaria. Common side effects include diarrhea, nausea, vomiting, a red rash, and an increased risk of a sunburn. If used during pregnancy or in young children may result in permanent problems with the teeth including changes in their color. Its use during breastfeeding is probably safe. Like other tetracycline antibiotics, Doxycycline is protein synthesis inhibitors, inhibiting the binding of aminoacyl-tRNA to the mRNA-ribosome complex by binding to the 30S ribosomal subunit in the mRNA translation complex.
Status:
US Approved Rx
(2003)
Source:
ANDA076645
(2003)
Source URL:
First approved in 1966
Source:
ANDA074623
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Lactulose is a non-absorbable sugar used in the treatment of constipation and hepatic encephalopathy. It is a disaccharide (double-sugar) formed from one molecule each of the simple sugars (monosaccharides) fructose and galactose. Lactulose is not normally present in raw milk but is a product of heat-processed: the greater the heat, the greater amount of this substance. Lactulose is not absorbed in the small intestine nor broken down by human enzymes, thus stays in the digestive bolus through most of its course, causing retention of water through osmosis leading to softer, easier to pass stool. It has a secondary laxative effect in the colon, where it is fermented by the gut flora, producing metabolites which have osmotic powers and peristalsis-stimulating effects (such as acetate), but also methane associated with flatulence. Lactulose is metabolized in the colon by bacterial flora to short chain fatty acids including lactic acid and acetic acid. These partially dissociate, acidifying the colonic contents (increasing the H+ concentration in the gut).[14] This favors the formation of the nonabsorbable NH+4 from NH3, trapping NH3 in the colon and effectively reducing plasma NH3 concentrations. Lactulose is used in the treatment of chronic constipation in patients of all ages as a long-term treatment. Lactulose is used for chronic idiopathic constipation, i.e. chronic constipation occurring without any identifiable cause. Lactulose may be used to counter the constipating effects of opioids, and in the symptomatic treatment of hemorrhoids as a stool softener.
Status:
US Approved Rx
(2016)
Source:
ANDA208162
(2016)
Source URL:
First approved in 1963
Source:
FLAGYL by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Status:
US Approved Rx
(2022)
Source:
ANDA212467
(2022)
Source URL:
First approved in 1961
Source:
NDA012827
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Glycopyrrolate is a synthetic anticholinergic agent with a quaternary ammonium structure. Glycopyrrolate is a muscarinic competitive antagonist used as an antispasmodic, in some disorders of the gastrointestinal tract, and to reduce salivation with some anesthetics. Glycopyrrolate binds competitively to the muscarinic acetylcholine receptor. Like other anticholinergic (antimuscarinic) agents, it inhibits the action of acetylcholine on structures innervated by postganglionic cholinergic nerves and on smooth muscles that respond to acetylcholine but lack cholinergic innervation. These peripheral cholinergic receptors are present in the autonomic effector cells of smooth muscle, cardiac muscle, the sinoatrial node, the atrioventricular node, exocrine glands and, to a limited degree, in the autonomic ganglia. Thus, it diminishes the volume and free acidity of gastric secretions and controls excessive pharyngeal, tracheal, and bronchial secretions. Glycopyrrolate antagonizes muscarinic symptoms (e.g., bronchorrhea, bronchospasm, bradycardia, and
intestinal hypermotility) induced by cholinergic drugs such as the anticholinesterases.
The highly polar quaternary ammonium group of glycopyrrolate limits its passage across lipid
membranes, such as the blood-brain barrier, in contrast to atropine sulfate and scopolamine
hydrobromide, which are highly non-polar tertiary amines which penetrate lipid barriers easily. Glycopyrrolate is marketed under the brand names Robinul, Robinul Forte, Cuvposa. In October 2015, glycopyrrolate was approved by the FDA for use as a standalone treatment for Chronic obstructive pulmonary disease (COPD), as Seebri Neohaler.
Status:
US Approved Rx
(2020)
Source:
NDA213422
(2020)
Source URL:
First approved in 1961
Source:
CELESTONE by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Status:
US Approved Rx
(1976)
Source:
NDA017768
(1976)
Source URL:
First approved in 1959
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorhexidine is a broad-spectrum biocide effective against Gram-positive bacteria, Gram-negative bacteria and fungi. It is used primarily as its salts (e.g., the dihydrochloride, diacetate, and digluconate). Chlorhexidine inactivates microorganisms with a broader spectrum than other antimicrobials (e.g. antibiotics) and has a quicker kill rate than other antimicrobials (e.g. povidone-iodine). It has both bacteriostatic (inhibits bacterial growth) and bactericidal (kills bacteria) mechanisms of action, depending on its concentration. Chlorhexidine kills by disrupting the cell membrane. The most common side effects associated with chlorhexidine gluconate oral rinses are: 1) an increase in staining of teeth and other oral surfaces; 2) an increase in calculus formation; and 3) an alteration in taste perception; 4) toothache; 5) upper respiratory tract infection; and 6) headache.
Status:
US Approved Rx
(2008)
Source:
ANDA040876
(2008)
Source URL:
First approved in 1959
Source:
IONAMIN by UCB INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Phentermine is an amphetamine that stimulates neurons to release or maintain high levels of a particular group of neurotransmitters known as catecholamines; these include dopamine and norepinephrine. High levels of these catecholamines tend to suppress hunger signals and appetite. The drug seems to inhibit reuptake of noradrenaline, dopamine, and seratonin through inhibition or reversal of the reuptake transporters. It may also inhibit MAO enzymes leaving more neurotransmitter available at the synapse. Phentermine (through catecholamine elevation) may also indirectly affect leptin levels in the brain. It is theorized that phentermine can raise levels of leptin which signal satiety. It is also theorized that increased levels of the catecholamines are partially responsible for halting another chemical messenger known as neuropeptide Y. This peptide initiates eating, decreases energy expenditure, and increases fat storage. Phentermine is indicated in the management of exogenous obesity as a short term (a few weeks) adjunct in a regimen of weight reduction based on caloric restriction. Phentermine hydrochloride is a sympathomimetic amine with pharmacologic activity similar to the prototype drugs of this class used in obesity, the amphetamines. Actions include central nervous system stimulation and elevation of blood pressure. Tachyphylaxis and tolerance have been demonstrated with all drugs of this class in which these phenomena have been looked for.