{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
acetylcholine
to a specific field?
Status:
US Previously Marketed
First approved in 1967
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diphenidol, a nonphenothiazinic antiemetic agent used primarily in patients with Meniere disease and labyrinthopathies to treat vomiting and vertigo, is considered to be a relatively safe drug. Since it was first approved in the United States in 1967, this drug has been widely used in Latin America and Asia and has contributed to sporadic suicidal and accidental poisonings in mainland China and Taiwan. The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. Diphenidol is used to relieve or prevent nausea, vomiting, and dizziness caused by certain medical problems.
Status:
US Previously Marketed
First approved in 1967
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diphenidol, a nonphenothiazinic antiemetic agent used primarily in patients with Meniere disease and labyrinthopathies to treat vomiting and vertigo, is considered to be a relatively safe drug. Since it was first approved in the United States in 1967, this drug has been widely used in Latin America and Asia and has contributed to sporadic suicidal and accidental poisonings in mainland China and Taiwan. The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. Diphenidol is used to relieve or prevent nausea, vomiting, and dizziness caused by certain medical problems.
Status:
US Previously Marketed
Source:
TREST by NOVARTIS
(1965)
Source URL:
First approved in 1965
Source:
TREST by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Methixene is a tertiary antimuscarinic with actions similar to those of atropine; it also has antihistaminic and direct antispasmodic properties. It is used for the symptomatic treatment of parkinsonism, including the alleviation of the extrapyramidal syndrome induced by other drugs such as phenothiazines, but, like other antimuscarinics, it is of no value against tardive dyskinesias. Metixene has been discontinued. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as metixene is considered to relate to competitive antagonism of acetylcholine at muscarinic receptors in the corpus striatum, which then restores the balance.
Status:
US Previously Marketed
Source:
TREST by NOVARTIS
(1965)
Source URL:
First approved in 1965
Source:
TREST by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Methixene is a tertiary antimuscarinic with actions similar to those of atropine; it also has antihistaminic and direct antispasmodic properties. It is used for the symptomatic treatment of parkinsonism, including the alleviation of the extrapyramidal syndrome induced by other drugs such as phenothiazines, but, like other antimuscarinics, it is of no value against tardive dyskinesias. Metixene has been discontinued. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as metixene is considered to relate to competitive antagonism of acetylcholine at muscarinic receptors in the corpus striatum, which then restores the balance.
Status:
US Previously Marketed
Source:
VALPIN 50 by ENDO PHARMS
(1962)
Source URL:
First approved in 1962
Source:
VALPIN 50 by ENDO PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methyl anisotropinium (Anisotropine methylbromide) is a quaternary ammonium compound. Its use as treatment adjunct in peptic ulcer has been replaced by the use of more effective agents. Depending on the dose, anisotropine methylbromide may reduce the motility and secretory activity of the gastrointestinal system, and the tone of the ureter and urinary bladder and may have a slight relaxant action on the bile ducts and gallbladder. In general, smaller doses of anisotropine methylbromide inhibit salivary and bronchial secretions, sweating, and accommodation; cause dilatation of the pupil; and increase the heart rate. Larger doses are required to decrease motility of the gastrointestinal and urinary tracts and to inhibit gastric acid secretion. Methyl anisotropinium inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves as well as on smooth muscles that respond to acetylcholine but lack cholinergic innervation. These postganglionic receptor sites are present in the autonomic effector cells of the smooth muscle, cardiac muscle, sinoatrial and atrioventricular nodes, and exocrine glands. It is used in conjunction with antacids or histamine H2-receptor antagonists in the treatment of peptic ulcer, to reduce further gastric acid secretion and delay gastric emptying.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
US Previously Marketed
Source:
AKINETON by ABBVIE
(1961)
Source URL:
First approved in 1959
Source:
AKINETON by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Biperiden, sold under the brandname Akineton was used as an adjunct in the therapy of all forms of parkinsonism (postencephalitic, arteriosclerotic and idiopathic). Was also useful in the control of extrapyramidal disorders due to central nervous system drugs such as phenothiazines and other groups of psychotropics. Biperiden is a weak peripheral anticholinergic agent. It has, therefore, some antisecretory, antispasmodic and mydriatic effects. In addition, biperiden possesses nicotinolytic activity. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as biperiden is considered to relate to competitive antagonism of acetylcholine at cholinergic receptors in the corpus striatum, which then restores the balance. Atropine-like side effects such as dry mouth; blurred vision; drowsiness; euphoria or disorientation; urinary retention; postural hypotension; constipation; agitation; disturbed behavior may been seen. Only limited pharmacokinetic studies of biperiden in humans are available.
Status:
US Previously Marketed
Source:
AKINETON by ABBVIE
(1961)
Source URL:
First approved in 1959
Source:
AKINETON by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Biperiden, sold under the brandname Akineton was used as an adjunct in the therapy of all forms of parkinsonism (postencephalitic, arteriosclerotic and idiopathic). Was also useful in the control of extrapyramidal disorders due to central nervous system drugs such as phenothiazines and other groups of psychotropics. Biperiden is a weak peripheral anticholinergic agent. It has, therefore, some antisecretory, antispasmodic and mydriatic effects. In addition, biperiden possesses nicotinolytic activity. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as biperiden is considered to relate to competitive antagonism of acetylcholine at cholinergic receptors in the corpus striatum, which then restores the balance. Atropine-like side effects such as dry mouth; blurred vision; drowsiness; euphoria or disorientation; urinary retention; postural hypotension; constipation; agitation; disturbed behavior may been seen. Only limited pharmacokinetic studies of biperiden in humans are available.