{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "SUBCHAPTER E--ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS" in comments (approximate match)
Status:
US Approved Rx
(1998)
Source:
ANDA064210
(1998)
Source URL:
First approved in 1946
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Streptomycin is a water-soluble aminoglycoside derived from Streptomyces griseus. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like Streptomycin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically Streptomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes.
Streptomycin is indicated for the treatment of tuberculosis. May also be used in combination with other drugs to treat tularemia (Francisella tularensis), plague (Yersia pestis), severe M. avium complex, brucellosis, and enterococcal endocarditis (e.g. E. faecalis, E. faecium).
Status:
US Approved Rx
(2009)
Source:
ANDA065448
(2009)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (ABSOLUTE)
Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Source:
SULFADIAZINE by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
US Approved Rx
(2021)
Source:
ANDA212313
(2021)
Source URL:
First approved in 1940
Source:
Dimenformon Dipropionate by Roche-Organon (H.La Roche; Organon)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).
Status:
US Approved Rx
(2022)
Source:
ANDA215634
(2022)
Source URL:
First marketed in 1934
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Progesterone is indicated in amenorrhea and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids of uterine cancer. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Progesterone is a naturally occurring steroid that is secreted by the ovary, placenta, and adrenal gland. In the presence of adequate estrogen, progesterone transforms a proliferative endometrium into a secretory endometrium. Progesterone is necessary to increase endometrial receptivity for implantation of an embryo. Once an embryo is implanted, progesterone acts to maintain a pregnancy. Progesterone shares the pharmacological actions of the progestins. Progesterone binds to the progesterone and estrogen receptors. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progesterone will slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH (luteinizing hormone) surge. In women who have adequate endogenous estrogen, progesterone transforms a proliferative endometrium into a secretory one. Progesterone is metabolized primarily by the liver largely to pregnanediols and pregnanolones. Pregnanediols and pregnanolones are conjugated in the liver to glucuronide and sulfate metabolites. Progesterone metabolites that are excreted in the bile may be deconjugated and may be further metabolized in the gut via reduction, dehydroxylation, and epimerization. Common progesterone side effects may include: drowsiness, dizziness; breast pain; mood changes; headache; constipation, diarrhea, heartburn; bloating, swelling in your hands or feet; joint pain; hot flashes; or vaginal discharge.
Status:
US Approved Rx
(2024)
Source:
ANDA215618
(2024)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters. Atropine is relatively selective for muscarinic receptors. Its potency at nicotinic receptors is much lower, and actions at non-muscarinic receptors are generally undetectable clinically. Atropine does not distinguish among the M1, M2, and M3 subgroups of muscarinic receptors.
Status:
US Approved Rx
(2019)
Source:
ANDA212172
(2019)
Source URL:
First marketed in 1894
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methenamine is an antibacterial agent for preventing recurrent urinary tract infection. It can be used as methenamine hippurate or methenamine mandelate preparations and is United States Food and Drug Administration-approved. Methenamine exerts its activity because it is hydrolyzed to formaldehyde in acid urine.
Status:
US Approved OTC
Source:
21 CFR 333.210(g) antifungal clotrimazole
Source URL:
First approved in 1975
Source:
LOTRIMIN by SCHERING PLOUGH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Clotrimazole is an anti-fungal medicine indicated for the treatment of vaginal yeast infections and tinea. It can be used either in combination with other drugs (betamethasone dipropionate) or alone, in form of topical or vaginal cream. The drug exerts its action by inhibiting lanosterol demethylase thereby affecting the growth of fungi.
Status:
US Approved OTC
Source:
21 CFR 333.210(c) antifungal miconazole nitrate
Source URL:
First approved in 1974
Source:
MONISTAT-DERM by INSIGHT PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Miconazole is a synthetic imidazole derivative, a topical antifungal agent for use in the local treatment of vaginal, and skin and nail infections due to yeasts and dermatophytes. It is particularly active against Candida spp., Trichophyton spp., Epidermophyton spp., Microsporum spp. and Pityrosporon orbiculare (Malassezia furfur), but also possesses some activity against Gram-positive bacteria. It binds to the heme moiety of the fungal cytochrome P-450 dependent enzyme lanosterol 14-alpha-demethlyase. Inhibits 14-alpha-demethlyase, blocks formation of ergosterol and leads to the buildup of toxic methylated 14-a-sterols. Miconazole also affects the synthesis of triglycerides and fatty acids and inhibits oxidative and peroxidative enzymes, increasing the amount of active oxygen species within the cell.
Status:
US Approved OTC
Source:
21 CFR 357.110 anthelmintic pyrantel pamoate
Source URL:
First approved in 1971
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyrantel is an anthelmintic, which acts as an agonist of nicotinic receptors (AChRs) of nematodes and exerts its therapeutic effects by depolarizing their muscle membranes. It is used to treat a number of parasitic worm infections. This includes ascariasis, hookworm infections, enterobiasis (pinworm infection), trichostrongyliasis and trichinellosis. Common adverse reactions include diarrhea, nausea, vomiting, dizziness, headache and somnolence.