U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 157 results

Status:
Investigational
Source:
NCT00696332: Phase 2 Interventional Completed ALS
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Talampanel (TLP) was developed as a noncompetitive (allosteric) antagonist of the AMPA receptor. Talampanel does not act directly on the AMPA receptor, but at an allosteric site referred to as the GYKI receptor. Talampanel is being studied in the treatment of brain tumors and other brain disorders, such as epilepsy, Parkinson disease, amyotrophic lateral sclerosis, dyskinesias, glioblastoma, multiple sclerosis. It is a type of AMPA receptor antagonist. Dizziness has been the most commonly reported adverse event, with some sedation and ataxia, drowsiness and headaches reported at higher doses.
Status:
Investigational
Source:
NCT00262990: Phase 3 Interventional Completed Ovarian Cancer
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Patupilone is a compound isolated from the myxobacterium Sorangium cellulosum. Similar to paclitaxel, Patupilone induces microtubule polymerization and stabilizes microtubules against depolymerization conditions. In addition to promoting tubulin polymerization and stabilization of microtubules, this agent is cytotoxic for cells overexpressing P-glycoprotein, a characteristic that distinguishes it from the taxanes. Epothilone B may cause complete cell-cycle arrest. Patupilone failed a phase III trial for ovarian cancer in 2010.
Status:
Investigational
Source:
NCT01235520: Phase 3 Interventional Completed Schizophrenia
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Bitopertin is a Glycine transporter type 1 inhibitor which was developed by Hoffmann-La Roche for the treatment of patients with schizophrenia. The drug was shown to be potent in vitro, however it failed to meet primary endpoints in phase III. Bitopertin was also tested for the treatment of obsessive-compulsive disorder, but the development stopped in phase II.
Status:
Investigational
Source:
NCT01091454: Phase 2 Interventional Completed Triple-negative Breast Cancer
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Brostallicin is a DNA minor groove binder which has shown very promising preclinical activity against a variety of human tumors both in vitro and in vivo. Brostallicin shows potent in vitro cytotoxic activity against tumor cells with IC50 values in the low nanomolar range, circumvents resistance to alkylating agents and camptothecins. Brostallicin has broad antitumor activity in animal models. A clear therapeutic gain is observed in preclinical models when brostallicin is combined with anticancer agents such as cisplatin, doxorubicin, and taxotere.
Status:
Investigational
Source:
NCT02860000: Phase 2 Interventional Active, not recruiting Estrogen Receptor Status
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Alisertib (MLN8237) is an orally available selective aurora A kinase inhibitor developed by Takeda. Alisertib inhibited AAK over ABK with a selectivity of more than 200-fold in cells and produced a dose-dependent decrease in bipolar and aligned chromosomes in the HCT-116 xenograft model, a phenotype consistent with AAK inhibition. Alisertib inhibited proliferation of human tumor cell lines in vitro and produced tumor growth inhibition in solid tumor xenograft models and regressions in in vivo lymphoma models. It is currently in phase II clinical trials for acute myeloid leukaemia; B cell lymphoma; brain cancer; mesothelioma; prostate cancer; small cell lung cancer.
Status:
Investigational
Source:
NCT03692312: Phase 2/Phase 3 Interventional Completed Congenital Myotonic Dystrophy
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Tideglusib (NP031112, NP-12, Nypta, Noscira SA, Madrid, Spain), a drug, which belongs to the thiadiazolidinone family, is a GSK-3β inhibitor. Tideglusib was in phase II clinical trials for the treatment of Alzheimer disease (AD) and progressive supranuclear palsy. Participants showed no benefit on either of the primary outcome measures or exploratory endpoints and further development in the drug was halted for these two disease. However, Tideglusib is on phase II clinical trial to determine whether drug is safe and efficacious in the treatment of adolescents and adults with congenital and juvenile-onset Myotonic Dystrophy.
Status:
Investigational
Source:
NCT01215799: Phase 2 Interventional Completed Hormone Refractory Prostate Cancer
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bafetinib (NS-187, INNO-406) is a second-generation tyrosine kinase inhibitor in development by CytRx under license from Nippon Shinyaku for treating Bcr-Abl+ leukemia's, including chronic myelogenous leukemia (CML) and Philadelphia+ acute lymphoblastic leukemia. It is a rationally developed tyrosine kinase inhibitor based on the chemical structure of imatinib, with modifications added to improve binding and potency against Bcr-Abl kinase. Besides Abl, bafetinib targets the Src family kinase Lyn, which has been associated with resistance to imatinib in CML. In preclinical studies, bafetinib was 25- to 55-fold more potent than imatinib in vitro and ≥ 10-fold more potent in vivo. Bafetinibinhibits 12 of the 13 most frequent imatinib-resistant Bcr-Abl point mutations, but not a Thr315Ile mutation. A small fraction of bafetinib crosses the blood-brain barrier, reaching brain concentrations adequate for suppression of Bcr-Abl+ cells. Data from a phase I clinical trial conducted in patients with imatinib-resistant or -intolerant CML have confirmed that bafetinib has clinical activity in this setting, inducing a major cytogenetic response in 19% of those patients in chronic phase. Currently, bafetinib is being developed in two phase II clinical trials for patients with B-cell chronic lymphocytic leukemia and prostate cancer, and a trial is in progress for patients with brain tumors. In 2005, the compound was licensed to Innovive Pharmaceuticals (acquired by CytRx Oncology in 2008) by Nippon Shinyaku on a worldwide basis, with the exception of Japan, for the treatment of CML. Orphan drug designation was assigned to the compound for the treatment of CML in the U.S in 2007 and in the E.U. in 2010. Bafetinib is in phase II for the treatment of hormone-refractory prostate cancer and chronic lymphocytic leukemia.
Status:
Investigational
Source:
NCT00699517: Phase 3 Interventional Completed Sarcoma
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Ombrabulin is an experimental drug candidate discovered by Ajinomoto and further developed by Sanofi-Aventis for cancer treatment. Ombrabulin is a synthetic water-soluble analog of combretastatin A4, derived from the South African willow bush (Combretum caffrum), with potential vascular-disrupting and antineoplastic activities. Ombrabulin binds to the colchicine binding site of endothelial cell tubulin, inhibiting tubulin polymerization and inducing mitotic arrest and apoptosis in endothelial cells. As apoptotic endothelial cells detach from their substrate, tumor blood vessels collapse; the acute disruption of tumor blood flow may result in tumor necrosis. Ombrabulin has been used in trials studying the treatment of Sarcoma, Neoplasms, Solid Tumor, Neoplasms, Malignant, and Advanced Solid Tumors, among others. In January 2013, Sanofi said it discontinued development of Ombrabulin after disappointing results from phase III clinical trials.
Status:
Investigational
Source:
NCT02029157: Phase 3 Interventional Completed Liver Cancer
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tivantinib (ARQ 197) is the first non-ATP-competitive small molecule that selectively targets the c-Met receptor tyrosine kinase. Exposure to Tivantinib resulted in the inhibition of proliferation of c-Met-expressing cancer cell lines as well as the induction of caspase-dependent apoptosis in cell lines with constitutive c-Met activity. ArQule and its collaborators Daiichi Sankyo and Kyowa Hakko Kirin are developing tivantinib as a potential therapy for many cancers. c-Met is overexpressed in many cancers. Tivantinib currently is in phase 3 clinical development for the treatment of hepatocellular carcinoma and non-small cell lung cancer.
Status:
Investigational
Source:
NCT00531401: Phase 2 Interventional Completed Carcinoma, Non-Small-Cell Lung
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Salirasib or S-trans,trans-Farnesylthiosalicylic acid (FTS) is a salicylic acid derivative with potential antineoplastic activity. It acts as a potent competitive inhibitor of the enzyme prenylated protein methyltransferase (PPMTase), which methylates the carboxyl-terminal S-prenylcysteine in a large number of prenylated proteins including Ras. In such systems, Salirasib inhibits Ras methylation but not Ras farnesylation. Salirasib selectively disrupts the association of chronically active Ras proteins with the plasma membrane. Salirasib competes with Ras for binding to Ras-escort proteins, which possess putative farnesyl-binding domains and interact only with the activated form of Ras proteins, thereby promoting Ras nanoclusterization in the plasma membrane and robust signals. Salirasib was studied in the clinical trials in patients with solid tumors, however its development was discontinued.