{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG|Withdrawn|" in comments (approximate match)
Status:
Possibly Marketed Outside US
Source:
NCT03431649: Phase 4 Interventional Completed Pediatric Pulmonary Hypertension
(2017)
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Beraprost is a stable, orally active prostacyclin analogue. Beraprost acts by binding to prostacyclin membrane receptors ultimately inhibiting the release of Ca2+ from intracellular storage sites. This reduction in the influx of Ca2+ has been postulated to cause relaxation of the smooth muscle cells and vasodilation. Beraprost is indicated for the treatment of pulmonary hypertension and improvement of ulcers, pain & feeling of coldness associated with chronic arterial occlusion. In addition beraprost displays thyroid hormone receptor antagonistic properties.
Status:
Possibly Marketed Outside US
Source:
Pixuvri by Boehringer Mannheim
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pixantrone is a novel anthracenedione. It is a weak inhibitor of topoisomerase II. Pixantrone directly alkylates DNA forming stable DNA adducts and cross-strand breaks. Pixuvri is approved for the treatment of adult patients with multiply relapsed or refractory aggressive Non-Hodgkin lymphomas. It is used for patients whose cancer does not respond or has returned after they have received other chemotherapy treatments. The most frequent AE were seen in the blood (mainly neutropaenia), gastrointestinal (nausea, abdominal pain, constipation) and respiratory systems (cough, dyspnea). No drug-drug interaction studies have been submitted and no drug interactions have been reported in human subjects
Status:
US Approved Rx
(2015)
Source:
ANDA205356
(2015)
Source URL:
First approved in 1961
Class:
MIXTURE
Conditions:
Colistimethate is a methanesulfonate of polymyxin antibacterial colistin. Colistimethate is a nonactive prodrug. In aqueous solutions, colistimethate is hydrolyzed and forms a complex mixture of partially sulfomethylated derivatives and colistin. The antimicrobial activity of colistin is similar to that of polymyxin B and is restricted to gram-negative bacteria, including P aeruginosa, Acinetobacter species, Enterobacter-Klebsiella tribe, Escherichia coli, Salmonella and Shigella species, Citrobacter species, Yersinia pseudotuberculosis, Morganella morganii and Haemophilus influenzae. Colistin has also been shown to possess considerable in vitro activity against Stenotrophomonas maltophilia. Colistin and polymyxin B, however, do not have activity against Proteus, Providencia, Serratia species, Pseudomonas mallei, Burkholderia cepacia, Brucella species, most gram-positive bacteria, gram-negative cocci, anaerobes, fungi and parasites. Parenteral or nebulized colistimethate is indicated for the treatment of acute or chronic infections due to sensitive strains of certain gram-negative bacilli. It is particularly indicated when the infection is caused by sensitive strains of Pseudomonas aeruginosa.
Status:
US Previously Marketed
Source:
Bexxar
(2003)
Source URL:
First approved in 2003
Source:
Bexxar
Source URL:
Class:
PROTEIN
Status:
Possibly Marketed Outside US
First approved in 2007
Source:
21 CFR 352
Source URL:
Class:
NUCLEIC ACID
Status:
US Approved Rx
(1995)
Source:
NDA020451
(1995)
Source URL:
First approved in 1995
Source:
NDA020451
Source URL:
Class:
POLYMER
Targets:
Conditions:
Porfimer is a photosensitizing agent used in the photodynamic therapy (PDT) of tumors. Porfimer sodium was approved under the brand name PHOTOFRIN for the palliation of patients with completely obstructing esophageal cancer, or of patients with partially obstructing esophageal cancer who, in the opinion of their physician, cannot be satisfactorily treated with Nd:YAG laser therapy. For the reduction of obstruction and palliation of symptoms in patients with completely or partially obstructing endobronchial nonsmall cell lung cancer (NSCLC). For the treatment of microinvasive endobronchial NSCLC in patients for whom surgery and radiotherapy are not indicated. In addition, for the ablation of high-grade dysplasia in Barrett’s esophagus patients who do not undergo esophagectomy. The cytotoxic and antitumor actions of PHOTOFRIN® are light and oxygen dependent. Photodynamic therapy with Porfimer sodium is a two-stage process. The first stage is the intravenous injection of the drug, which mainly is concentrated in the tumor tissues for a longer period. Illumination with 630 nm wavelength laser light constitutes the second stage of therapy. Cellular damage is a consequence of the propagation of radical reactions. Radical initiation may occur after porfimer absorbs light to form a porphyrin excited state. Tumor death also occurs through ischemic necrosis secondary to vascular occlusion that appears to be partly mediated by thromboxane A2 release. The laser treatment induces a photochemical, not a thermal, effect. The necrotic reaction and associated inflammatory responses may evolve over several days.
Status:
US Approved Rx
(2020)
Source:
ANDA212060
(2020)
Source URL:
First approved in 1939
Source:
LIQUAEMIN SODIUM by ASPEN GLOBAL INC
Source URL:
Class:
POLYMER
Нeparin (or Unfractionated heparin ) is an anticoagulant indicated for both the prevention and treatment of thrombotic events such as deep vein thrombosis (DVT) and pulmonary embolism (PE) as well as atrial fibrillation (AF). Heparin can also be used to prevent excess coagulation during procedures such as cardiac surgery, extracorporeal circulation or dialysis, including continuous renal replacement therapy. Heparin administration can be by intravenous (or subcutaneous route. Intravenous heparin is continuously administered for therapeutic anticoagulation, while intermittent subcutaneous administration is used to prevent thromboembolism. Once administered, heparin binds reversibly to antithrombin III (ATIII) and greatly accelerates the rate at which ATIII inactivates coagulation enzymes thrombin (factor IIa) and factor Xa. The heparin-ATIII complex can also inactivate factors IX, XI, XII, and plasmin, but the antithrombotic effect of heparin is well correlated to the inhibition of factor Xa. Typical adverse effects from heparin use include bleeding, thrombocytopenia, injection site reactions, and other adverse effects only seen with chronic heparin administration. Bleeding is a major complication associated with heparin use. Patients should undergo monitoring for new bleeding that may present in the urine or stool. Bleeding may also present as bruising, petechial rash and nosebleeds.