{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "EU ORPHAN DRUG|Withdrawn|" in comments (approximate match)
Status:
Investigational
Source:
NCT01746979: Phase 3 Interventional Completed Metastatic or Locally Advanced Unresectable Pancreatic Adenocarcinoma
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Evofosfamide, also formerly known as TH-302, is an investigational hypoxia-activated prodrug and is used to target cancerous cells under hypoxic conditions, which is a feature possessed by multiple solid tumors including glioblastoma and pancreatic cancer. Within regions of tumor hypoxia, evofosfamide releases bromo isophosphoramide mustard (Br-IPM), a potent DNA alkylating agent that kills tumor cells by forming DNA crosslinks. Once activated in hypoxic tissues, Br-IPM can also diffuse into surrounding oxygenated regions of the tumor and kill cells there via a “bystander effect”. Because of its preferential activation in the targeted hypoxic regions of solid tumors, evofosfamide may be less likely to produce broad systemic toxicity seen with untargeted cytotoxic chemotherapies.
Status:
Investigational
Source:
NCT00012259: Phase 2 Interventional Completed Leukemia
(2000)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Troxacitabine is a synthetic nucleoside analogue. It is a poor substrate for nucleoside transporters and gains entry into cells by passive diffusion. Intracellular conversion to its active triphosphate form is via deoxycytidine kinase. Incorporation of this metabolite into DNA results in immediate chain termination and apoptosis induction. It is the first nucleoside analog with anticancer activity that has an unnatural stereochemical configuration. The dose-limiting adverse reactions were stomatitis and hand–foot syndrome.
Status:
Investigational
Source:
NCT00908752: Phase 3 Interventional Completed Hepatocellular Carcinoma
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Brivanib is a pyrrolotriazine-based compound and an inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) with potential antineoplastic activity. It specifically targets and strongly binds to human VEGFR-2, a tyrosine kinase receptor and pro-angiogenic growth factor expressed almost exclusively on vascular endothelial cells. Blockade of VEGFR-2 by this agent may lead to an inhibition of VEGF-stimulated endothelial cell migration and proliferation, thereby inhibiting tumor angiogenesis. Brivanib has a moderate potency compared to VEGFR-2 against VEGFR-1 and FGFR-1 as well. Brivanib is suggested to be efficient in treatment of hepatocellular carcinoma (HCC). As first-line and as second-line therapy brivanib demonstrated promising antitumor activity and a manageable safety profile in patients with advanced, unresectable HCC in phase II clinical trials. On 3 march 2011, orphan designation was granted by the European Commission to Bristol-Myers Squibb for brivanib alaninate for the treatment of hepatocellular carcinoma.[
Status:
Investigational
Source:
NCT00064142: Phase 2 Interventional Completed AIDS-related Kaposi Sarcoma
(2003)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Halofuginone is a low molecular weight quinazolinone alkaloid, and a potent inhibitor of collagen alpha1(I) and matrix metalloproteinase 2 (MMP-2) gene expression. Halofuginone also effectively suppresses tumor progression and metastasis in mice. Halofuginone is a potent inhibitor of collagen a1(I) and matrix metalloproteinase 2 (MMP-2) gene expression. Halofuginone also suppresses extracellular matrix deposition and cell proliferation. Also was shown that halofuginone increased apoptosis in α smooth muscle actin- and prolyl 4-hydroxylase β-expressing cells in mdx diaphragm and in myofibroblasts, the major source of extracellular matrix. The profound antitumoral effect of halofuginone is attributed to its combined inhibition of tumour-stromal support, vascularization, invasiveness, and cell proliferation. HT-100 (delayed-release halofuginone), currently in clinical phase 1b/2a in five U.S. hospitals, is a small molecule drug candidate taken orally for the treatment of Duchenne muscular dystrophy (DMD) patients primarily through its ability to reduce fibrosis and inflammation and promote muscle fiber regeneration. The medicine candidate has been granted orphan drug designation in the U.S. and the EU — meaning it has been commercially undeveloped due to its limited profitability — and fast-track designation in the U.S. — an FDA process that aims to facilitate the development and patients’ reach to novel therapies for unmet medical needs.
Status:
US Previously Marketed
Source:
SYNRIBO by TEVA PHARMS INTL
(2012)
Source URL:
First approved in 2012
Source:
SYNRIBO by TEVA PHARMS INTL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Omacetaxine mepesuccinate (trade name Synribo) formerly named as homoharringtonine or HHT, is a pharmaceutical drug substance that is indicated for treatment of chronic myeloid leukemia (CML). It is a natural ester of the alkaloid cephalotaxine from Cephalotaxus harringtonia, now manufactured by hemi-synthesis. It was approved by the US FDA in October 2012 for the treatment of adult patients with CML with resistance and/or intolerance to two or more tyrosine kinase inhibitors (TKIs). The mechanism of action of omacetaxine mepesuccinate has not been fully elucidated but includes inhibition of protein synthesis and is independent of direct Bcr-Abl binding. Omacetaxine mepesuccinate binds to the A-site cleft in the peptidyl-transferase center of the large ribosomal subunit from a strain of archaeabacteria. In vitro, omacetaxine mepesuccinate reduced protein levels of the Bcr Abl oncoprotein and Mcl-1, an anti-apoptotic Bcl-2 family member. Omacetaxine mepesuccinate showed activity in mouse models of wild-type and T315I mutated Bcr-Abl CML.
Status:
US Previously Marketed
Source:
RESCULA by SUCAMPO PHARMA LLC
(2000)
Source URL:
First approved in 2000
Source:
RESCULA by SUCAMPO PHARMA LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Unoprostone Isopropyl is a synthetic docosanoid and a structural analogue of an inactive biosynthetic cyclic derivative of arachidonic acid, 13,14-dihydro-15-keto-prostaglandin F 2a. Although the mechanism of action is unknown, unoprostone isopropyl is believed to reduce elevated intraocular pressure by increasing the outflow of aqueous humor through the trabecular meshwork. Unoprostone isopropyl (UI) may have a local effect on Big Potassium channels and ClC-2 chloride channels, but the exact mechanism is unknown at this time. Unoprostone is used for the management of open-angle glaucoma and ocular hypertension. The therapeutic efficacy of Unoprostone can be decreased when used in combination with Celecoxib, Diclofenac, Diflunisal, Etodolac and some other drugs. Unoprostone isopropyl ophthalmic solution may gradually increase the pigmentation of the iris, cause pigment changes (darkening) to periorbital pigmented tissues and eyelashes, exacerbate active intraocular inflammation (e.g., uveitis), and cause macular edema. In clinical studies, the most common ocular adverse reactions with use of Rescula were burning/stinging, burning/stinging upon drug instillation, dry eyes, itching, increased length of eyelashes, and injection. These were reported in approximately 10–25% of patients. Ocular adverse reactions occurring in approximately 5–10% of patients were abnormal vision, eyelid disorder, foreign body sensation, and lacrimation disorder. Other adverse reactions occurred more rarely.
Status:
Possibly Marketed Outside US
Source:
NCT02469337: Phase 4 Interventional Unknown status Insulin Resistance
(2012)
Source URL:
First approved in 2011
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dichloroacetic acid, often abbreviated DCA (dichloroacetate), is an acid analog of acetic acid in which two of the three hydrogen atoms of the methyl group have been replaced by chlorine atoms. The salts and esters of dichloroacetic acid are called dichloroacetates. Salts of DCA are used as drugs since they inhibit the enzyme pyruvate dehydrogenase kinase. Early reports of its activity against brain cancer cells led patients to treat themselves with DCA, which is commercially available in non-pharmaceutical grade. A phase 1 study in 5 patients concluded that DCA was safe, but wasn't designed to establish effectiveness.
DCA was approved for use in Canada in 1989 (as a topical formulation for the treatment of warts and for cauterization and removal of a wide variety of skin and tissue lesions), but was cancelled post market. DCA is a noncompetitive inhibitor of the endoplasmic reticulum enzyme HMG CoA reductase, which catalyzes the rate limiting step in cholesterol biosynthesis. DCA has been researched in adults, children, animals, and cells as a monotherapy as well as in
combination with other therapies for the treatment of severe metabolic disorders including diabetes and hypercholesterolemia, lactic acidosis, certain heart conditions, and cancer. DCA has been prescribed to reduce tumour size and tumour markers, prevent angiogenesis, reduce
cancer related symptoms, manage pain, and aid in palliation.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Xaliproden is an orally active 5HT1-A receptor antagonist that was being developed by Sanofi. It has been evaluated for the treatment of Alzheimer's disease and amyotrophic lateral sclerosis (ALS), and protection against peripheral neurotoxicity associated with certain cancer chemotherapies. Two large, 18-month, clinical trials of xaliproden (monotherapy or
adjunctive therapy, respectively) in patients with mild to moderate AD (MMSE, 16–26,
inclusive) were completed in 2007. Failure to demonstrate sufficient efficacy in both trials
resulted in cancelation of the xaliproden development program for AD in September 2007.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Tilarginine is L-N-monomethyl arginine (L -NMMA), a non-selective inhibitor of nitric oxide synthase (NOS), which has been studied in the treatment of septic shock and cardiogenic shock complicating myocardial infarction. Despite strong evidence that excessive nitric oxide (NO) production plays a pivotal role in the pathogenesis of septic shock and may contribute to the pathogenesis of cardiogenic shock complicating myocardial infarction, outcome studies in these two disorders have proved disappointing. Tilarginine therapy was associated with an excess mortality, particularly at doses > 5 mg/(kg h), in septic shock, whereas the effects of a lower dose (1 mg/(kg h)) in cardiogenic shock complicating myocardial infarction were neutral. The excess mortality in patients with septic shock was almost certainly the result of unfavorable hemodynamic changes induced by Tilarginine (decreased cardiac output, increased pulmonary vascular resistance and reduced tissue oxygen delivery) whereas the lack of benefit in patients with cardiogenic shock complicating myocardial infarction may have been because the dose of Tilarginine was too low.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sitaxentan (TBC11251, trade name Thelin) is a potent and selective Endothelin A receptor antagonist. Sitaxentan was under development by Encysive Pharmaceuticals (now Pfizer) for use in the treatment of pulmonary hypertension, congestive heart failure and asthma. It was launched in the major markets of the European Union (EU) under name Thelin for the treatment of pulmonary arterial hypertension. In December 2010, Pfizer discontinued clinical trials of sitaxentan worldwide and initiated voluntary product withdrawal from markets where it is approved due to life-threatening idiosyncratic risk of liver injury.