U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 102012 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Pibrentasvir is a direct acting antiviral agent and Hepatitis C virus (HCV) NS5A inhibitor that targets the the viral RNA replication and viron assembly. NS5A is a phosphoprotein that plays an essential role in replication, assembly and maturation of infectious viral proteins. The basal phosphorylated form of NS5A, which is maintained by C-terminal serine cluster, is key in ensuring its interaction with the viral capsid protein, or the core protein. By blocking this interaction, pibrentasvir inhibits the assembly of proteins and production of mature HCV particles. In the United States and Europe, Pibrentasvir is approved for use with glecaprevir as the combination drug glecaprevir/pibrentasvir (trade name Mavyret in the US and Maviret in the EU) for the treatment of hepatitis C. This fixed-dose combination therapy was FDA-approved in August 2017 to treat adults with chronic hepatitis C virus (HCV) genotypes 1-6 without cirrhosis (liver disease) or with mild cirrhosis, including patients with moderate to severe kidney disease and those who are on dialysis.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Telotristat (telotristat etiprate) is an ethyl ester prodrug which is hydrolyzed to its active moiety LP-778902 both in vivo and in vitro. Telotristat etiprate is an orally bioavailable, small-molecule, tryptophan hydroxylase (TPH) inhibitor. It is the first investigational drug in clinical studies to target TPH, an enzyme that triggers the excess serotonin production within metastatic neuroendocrine tumor (mNET) cells leading to carcinoid syndrome. Unlike existing treatments of carcinoid syndrome which reduce the release of serotonin outside tumor cells, telotristat etiprate reduces serotonin production within the tumor cells. By specifically inhibiting serotonin production telotristat may provide patients with more control over their disease. Telotristat etiprate has received Fast Track and Orphan Drug designation from the U.S. Food and Drug Administration and has been granted priority review by the FDA with a Prescription Drug User Fee Act (PDUFA) target action date of February 28, 2017.
Delafloxacin (CAS registry number 189279-58-1) was described as WQ-3034 by Wakunaga Pharmaceutical Co., Ltd., Osaka & Hiroshima, Japan. It was first licensed in 1999 to Abbott Park, IL, and further developed as ABT-492. Delafloxacin (Baxdela), a fluoroquinolone antibiotic, is currently being developed by Melinta Therapeutics. It is a novel investigational fluoroquinolone in development for the treatment of uncomplicated gonorrhea, and acute bacterial skin and skin structure infections. Delafloxacin shows MICs remarkably low against Gram-positive organisms and anaerobes and similar to those of ciprofloxacin against Gram-negative bacteria. It remains active against most fluoroquinolone-resistant strains, except enterococci. Its potency is further increased in acidic environments (found in many infection sites). Delafloxacin is active on staphylococci growing intracellularly or in biofilms. Delafloxacin is a dual-targeting fluoroquinolone, capable of forming cleavable complexes with DNA and topoisomerase IV or DNA gyrase and of inhibiting the activity of these enzymes in both Gram-positive and Gram-negative bacteria. On Oct 24, 2016, Melinta Therapeutics Submitted Baxdela New Drug Application for hospital-treated skin infections.
Safinamide (FCE 26743, NW 1015, PNU 151774, PNU 151774E, trade name Xadago) combines potent, selective, and reversible inhibition of MAO-B with blockade of voltage-dependent Na+ and Ca2+ channels and inhibition of glutamate release. Safinamide is under development with Newron, Zambon and Meiji Seika Pharma for the treatment of Parkinson's disease. Safinamide has been launched in the EU, Iceland and Liechtenstein. Safinamide was well tolerated and safe in the clinical development program that demonstrated the amelioration of motor symptoms and OFF phenomena by safinamide when combined with dopamine agonists or levodopa.
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Neratinib (HKI-272) is a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is a modified form of the discontinued compound pelitinib, and was originally being develoAdditionally, phase II development of oral neratinib as a neoadjuvant therapy for breast cancer, as a second-line therapy for non-small cell lung cancer, and for other solid tumours is also in progress in numerous countries worldwide. ped by Wyeth (later Pfizer). Oral neratinib is awaiting approval as an extended adjuvant therapy for breast cancer in the EU and in the US. Blocking HER2 function by a small molecule kinase inhibitor, such as neratinib, represents an attractive alternate strategy for the growth inhibition of HER2-positive tumours.
Status:
First approved in 2017
Source:
KISQALI by Astex Therapeutics
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Ribociclib, also known as LEE011, is an orally available cyclin-dependent kinase (CDK) inhibitor targeting cyclin D1/CDK4 and cyclin D3/CDK6 cell cycle pathway, with potential antineoplastic activity. CDK4/6 inhibitor LEE011 specifically inhibits CDK4 and 6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Inhibition of Rb phosphorylation prevents CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase, suppressing DNA synthesis and inhibiting cancer cell growth. Overexpression of CDK4/6, as seen in certain types of cancer, causes cell cycle deregulation. Ribociclib is in phase III clinical trials by Novartis for the treatment of postmenopausal women with advanced breast cancer. Phase II clinical trials are also in development for the treatment of liposarcoma, ovarian cancer, fallopian tube cancer, peritoneum cancer, endometrial cancer, and gastrointestinal cancer. Preregistration for Breast cancer (First-line therapy, Combination therapy, Late-stage disease) in the USA (PO) in November 2016.
Edaravone is a free radical scavenger developed for the treatment of amyotrophic lateral sclerosis.

Class (Stereo):
CHEMICAL (RACEMIC)



Secnidazole (trade names Flagentyl, Sindose, Solosec) is a nitroimidazole derivative used to in the treatment of amoebiasis and bacterial vaginosis. Secnidazole and other 5-nitroimidazole drugs enter micro-organisms by passive diffusion and undergo activation by reduction of the 5-nitro group. In anaerobic micro-organisms, such as Trichomonas, Giardia and Entamoeba spp., this intracellular reduction occurs via the pyruvate ferredoxin oxidoreductase complex and results in a concentration gradient across the cell membrane which, in tum, enhances transport of the parent drug into the cell. Because the electron affinity of the 5-nitroimidazoles is greater than that of reduced ferredoxin, the drug interrupts the normal electron flow. Aerobic micro-organisms have a more positive redox potential (i.e. are more efficient electron acceptors) than secnidazole and other 5-nitroimidazoles, which explains the selective toxicity of these drugs against anaerobic microorganisms. DNA is the intracellular target of the Secnidazole and other 5-nitroimidazoles. Secnidazole and other 5-nitroimidazoles possess selective activity against many anaerobic Gram-positive and Gram-negative bacteria and protozoa. In general, secnidazole and metronidazole were approximately equipotent in activity against Bacteroides fragilis, Trichomonas vaginalis, and Entamoeba histolytica, in in vitro studies. Secnidazole is rapidly and completely absorbed after oral administration. Plasma drug concentrations are linear over the therapeutic dose range of 0.5 to 2g. The tolerability profile of secnidazole does not differ markedly from other 5-nitroimidazoles. The most commonly reported adverse events in clinical trials involved the gastrointestinal tract (nausea, vomiting, glossitis, anorexia, epigastric pain and a metallic taste) and occurred in 2 to 10% of patients. A headache and dizziness were experienced by about 2% of patients. The drug was equally well tolerated in adults and children, and no adverse event required therapeutic intervention or treatment withdrawal.
Status:
First approved in 2017
Source:
PREVYMIS by Bayer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Letermovir (AIC246 or MK-8228), a 3,4-dihydro-quinazoline- 4-yl-acetic acid derivative, is the prototype viral terminase complex inhibitor that is most advanced in its clinical development. The novel compound was initially developed by AiCuris. In April 2011, the drug was granted orphan drug designation for prevention of CMV disease by the European Commission. In August 2011, the US Food and Drug Administration granted it a fast track designation. In 2012, the results of Phase IIb clinical trials using letermovir in bone marrow transplant patients were presented at various international meetings, and the data were subsequently published in 2014.42 It`s continued clinical development is currently undertaken in agreement with Merck. Letermovir is highly potent in vitro and in vivo against cytomegalovirus. Because of a distinct mechanism of action, it does not exhibit cross-resistance with other antiviral drugs. It is predicted to be active against strains that are resistant to ganciclovir, foscarnet, and cidofovir. To date, early-phase clinical trials suggest a very low incidence of adverse effects. It targets the UL56 subunit of the viral terminase complex. Letermovir is currently in Phase III development.