U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 581 - 590 of 751 results

Human secretin is a gastrointestinal peptide hormone that regulates secretions in the stomach, pancreas, and liver. Synthetic human secretin displays equivalent biological activity and properties as naturally occurring secretin. Acetate salt of synthetic secretin was marketed under the name ChiRhoStim. ChiRhoStim is indicated for the stimulation of pancreatic secretions, including bicarbonate, to aid in the diagnosis of pancreatic exocrine dysfunction, for the gastrin secretion to aid in the diagnosis of gastrinoma. ChiRhoStim is also used for the pancreatic secretions to facilitate the identification of the ampulla of Vater and accessory papilla during endoscopic, retrograde cholangiopancreatography (ERCP). When secretin binds to secretin receptors on pancreatic duct cells it opens cystic fibrosis transmembrane conductance regulator (CFTR) channels, leading to secretion of bicarbonate-rich-pancreatic fluid.
Ziconotide (PRIALT; SNX-111) is a neuroactive peptide, which was approved by FDA in 2004 for the management of severe chronic pain in adult patients for whom intrathecal therapy is warranted, and who are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies, or intrathecal morphine. Ziconotide acts as a selective N-type voltage-gated calcium channel blocker, which leads to a blockade of excitatory neurotransmitter release from the primary afferent nerve terminals.
Triptorelin is a synthetic decapeptide agonist analog of luteinizing hormone releasing hormone (LHRH). It works by decreasing the production of certain hormones, which reduces testosterone levels in the body. Animal studies comparing triptorelin to native GnRH found that triptorelin had 13 fold higher releasing activity for luteinizing hormone, and 21-fold higher releasing activity for follicle-stimulating hormone. Triptorelin is indicated for the palliative treatment of advanced prostate cancer.
Triptorelin is a synthetic decapeptide agonist analog of luteinizing hormone releasing hormone (LHRH). It works by decreasing the production of certain hormones, which reduces testosterone levels in the body. Animal studies comparing triptorelin to native GnRH found that triptorelin had 13 fold higher releasing activity for luteinizing hormone, and 21-fold higher releasing activity for follicle-stimulating hormone. Triptorelin is indicated for the palliative treatment of advanced prostate cancer.
Cosyntropin (ACTH (1–24)) is a synthetic peptide that is identical to the 24-amino acid segment at the N-terminal of adrenocorticotropic hormone. It is intended for use as a diagnostic agent in the screening of patients presumed to have adrenocortical insufficiency. Cosyntropin may bind to sites located on the adrenergic nerve endings associated with the cardiac tissue, and such binding would interfere with the neuronal reuptake of the catecholamines
Glucagon is a polypeptide hormone identical to human glucagon that increases blood glucose and relaxes smooth muscle of the gastrointestinal tract. Glucagon is synthesized in a special non-pathogenic laboratory strain of Escherichia coli bacteria that has been genetically altered by the addition of the gene for glucagon. Glucagon generally elevates the concentration of glucose in the blood by promoting gluconeogenesis and glycogenolysis. Glucagon also decreases fatty acid synthesis in adipose tissue and the liver, as well as promoting lipolysis in these tissues, which causes them to release fatty acids into circulation where they can be catabolised to generate energy in tissues such as skeletal muscle when required. Glucose is stored in the liver in the form of the polysaccharide glycogen, which is a glucan (a polymer made up of glucose molecules). Liver cells (hepatocytes) have glucagon receptors. When glucagon binds to the glucagon receptors, the liver cells convert the glycogen into individual glucose molecules and release them into the bloodstream, in a process known as glycogenolysis. As these stores become depleted, glucagon then encourages the liver and kidney to synthesize additional glucose by gluconeogenesis. Glucagon turns off glycolysis in the liver, causing glycolytic intermediates to be shuttled to gluconeogenesis. Glucagon also regulates the rate of glucose production through lipolysis. Glucagon induces lipolysis in humans under conditions of insulin suppression (such as diabetes mellitus type 1). Glucagon increases blood glucose concentration and is used in the treatment of hypoglycemia. Glucagon administered through a parenteral route relaxes smooth muscle of the stomach, duodenum, small bowel, and colon. Glucagon is also indicated as a diagnostic aid in the radiologic examination of the stomach, duodenum, small bowel, and colon when diminished intestinal motility would be advantageous.
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
More than a century ago, Sir Henry Dale demonstrated that a component of the pituitary causes contractions of the mammalian uterus, hence his coining the term “oxytocic,” derived from the Greek for “quick birth,” for its activity. The discovery that a component of the pituitary causes milk secretion followed within a few years. By 1930, oxytocin was separated from vasopressin into pitocin and pitressin, respectively, at Parke Davis and made available for research. That a single peptide was responsible for these uterine and mammary actions was definitively confirmed upon the sequencing and synthesis of the peptide, 9 amino acids in length. Vincent du Vigneaud was awarded a Nobel Prize for this work. Oxytocin is indicated for the initiation or improvement of uterine contractions, where this is desirable and considered suitable for reasons of fetal or maternal concern, in order to achieve vaginal delivery. Oxytocin is indicated to produce uterine contractions during the third stage of labor and to control postpartum bleeding or hemorrhage. Uterine motility depends on the formation of the contractile protein actomyosin under the influence of the Ca2+- dependent phosphorylating enzyme myosin light-chain kinase. Oxytocin promotes contractions by increasing the intracellular Ca2+. Oxytocin has specific receptors in the myometrium and the receptor concentration increases greatly during pregnancy, reaching a maximum in early labor at term. The Oxytocin receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the Oxytocin system is strongly steroid dependent.
Status:
Investigational
Source:
NCT04311697: Phase 2/Phase 3 Interventional Completed Critical COVID-19 With Respiratory Failure
(2020)
Source URL:

Class:
PROTEIN

Aviptadil, a vasoactive intestinal polypeptide, is a vasodilator and lowers blood pressure if administered intravenously. In 2007, the orphan designation was granted by the European Commission for aviptadil for the treatment of sarcoidosis, a disease of unknown cause that affects many organs and tissues, most commonly the lungs. Sarcoidosis is characterized by specific microscopic lesions called granulomas. Aviptadil is able to influence the immune system that decreases the inflammatory processes seen in sarcoidosis by acting on the white blood cells (lymphocytes and monocytes) involved in the formation of the granulomas. In combination with phentolamine, the drug is used to treat erectile dysfunction. In addition, aviptadil has been studied in phase II clinical trials for patients with respiratory distress syndrome.
Status:
Investigational
Source:
NCT04462536: Phase 3 Interventional Completed Stroke, Acute
(2020)
Source URL:

Class:
PROTEIN

TAT-NR2B9C is a synthetic peptide fusion of the nine C-terminal residues of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor and the cell membrane protein transduction domain of the HIV-1 tat protein. It is a postsynaptic density protein-95 (PSD95) inhibitor with neuroprotective properties. It is under development for the treatment of acute stroke and acute cerebral ischemia.

Showing 581 - 590 of 751 results