U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 571 - 580 of 751 results

Status:
Possibly Marketed Outside US
Source:
NCT01981083: Phase 4 Interventional Unknown status Protein-Energy Malnutrition
(2013)
Source URL:

Class:
PROTEIN

Terlipressin (Glypressin) is indicated for the treatment of bleeding oesophageal varices and in some countries for the treatment of hepatorenal syndrome type 1. It is a prodrug and is converted to the lysine vasopressin in the circulation after the N-triglycyl residue is cleaved by endothelial peptidases. This results in a ‘slow release’ of the vasoactive lysine vasopressin. Terlipressin exerts its action by activating V1a, V1b and V2 vasopressin receptors. On September 14, 2022, the FDA granted approval to terlipressin (Terlivaz) for the treatment of adults hospitalized with hepatorenal syndrome with rapid reduction in kidney function (HRS-1). Prior to the approval, no approved treatment for this condition existed in the United States.
Terlipressin (Glypressin) is indicated for the treatment of bleeding oesophageal varices and in some countries for the treatment of hepatorenal syndrome type 1. It is a prodrug and is converted to the lysine vasopressin in the circulation after the N-triglycyl residue is cleaved by endothelial peptidases. This results in a ‘slow release’ of the vasoactive lysine vasopressin. Terlipressin exerts its action by activating V1a, V1b and V2 vasopressin receptors. On September 14, 2022, the FDA granted approval to terlipressin (Terlivaz) for the treatment of adults hospitalized with hepatorenal syndrome with rapid reduction in kidney function (HRS-1). Prior to the approval, no approved treatment for this condition existed in the United States.
Dasiglucagon (Zegalogue®) is an antihypoglycaemic agent being developed by Zealand Pharma for the treatment of hypoglycaemia, type 1 diabetes mellitus (T1DM) management and congenital hyperinsulinism. Dasiglucagon is a glucagon receptor agonist, which increases blood glucose concentration by activating hepatic glucagon receptors, thereby stimulating glycogen breakdown and release of glucose from the liver. Hepatic stores of glycogen are necessary for dasiglucagon to produce an antihypoglycemic effect. In March 2021, dasiglucagon received its first approval in the USA for the treatment of severe hypoglycaemia in paediatric and adult patients with diabetes aged 6 years and above. Dasiglucagon, a glucagon analogue, is available as a single-dose autoinjector or prefilled syringe for subcutaneous injection.
Abaloparatide (brand name Tymlos) is a human parathyroid hormone related peptide [PTHrP(1-34)] analog indicated for the treatment of postmenopausal women with osteoporosis at high risk for fracture. Abaloparatide is a PTHrP(1-34) analog which acts as an agonist at the PTH1 receptor (PTH1R). This results in activation of the cAMP signaling pathway in target cells. In rats and monkeys, abaloparatide had an anabolic effect on bone, demonstrated by increases in BMD and bone mineral content (BMC) that correlated with increases in bone strength at vertebral and/or nonvertebral sites. Abaloparatide was approved in April 28, 2017 by the FDA (as Tymlos) for the treatment of postmenopausal women with osteoporosis at high risk for fracture.
Lanreotide is a medication used in the management of acromegaly and symptoms caused by neuroendocrine tumors, most notably carcinoid syndrome. It is a long-acting analog of somatostatin. It is available in several countries, including the United Kingdom, Australia and Canada, and was approved for sale in the United States by the Food and Drug Administration on August 30, 2007. Lanreotide was developed in the lab of Dr. David H. Coy, School of Medicine. Dr. Coy serves as Director of the Peptide Laboratory. Lanreotide (as lanreotide acetate) is manufactured by Ipsen, and marketed under the trade name Somatuline. The mechanism of action of lanreotide is believed to be similar to that of natural somatostatin. Lanreotide has a high affinity for human somatostatin receptors (SSTR) 2 and 5 and a reduced binding affinity for human SSTR1, 3, and 4. Activity at human SSTR 2 and 5 is the primary mechanism believed responsible for GH inhibition. Like somatostatin, lanreotide is an inhibitor of various endocrine, neuroendocrine, exocrine and paracrine functions. Lanreotide inhibits the basal secretion of motilin, gastric inhibitory peptide and pancreatic polypeptide, but has no significant effect on the secretion of secretin. Lanreotide inhibits postprandial secretion of pancreatic polypeptide, gastrin and cholecystokinin (CCK). In healthy subjects, lanreotide produces a reduction and a delay in post-prandial insulin secretion, resulting in transient, mild glucose intolerance.
Pramlintide is an analog of human amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. SYMLIN® (pramlintide acetate) is indicated for patients with type 1 or type 2 diabetes who use mealtime insulin and have failed to achieve desired glycemic control despite optimal insulin therapy.
Pramlintide is an analog of human amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. SYMLIN® (pramlintide acetate) is indicated for patients with type 1 or type 2 diabetes who use mealtime insulin and have failed to achieve desired glycemic control despite optimal insulin therapy.

Showing 571 - 580 of 751 results