U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 431 - 440 of 3321 results

Edetic acid (EDTA) is a chelating agent. The U.S. Food and Drug Administration (FDA) approved edetic acid chelation therapy as a treatment for lead and heavy metal poisoning. Edetic acid in form of disodium salt was withdrawn from the market due to death resulting from hypocalcemia during chelation.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Cysteine (cysteine hydrochloride is a salt) is a thiol-containing amino acid that is oxidized to form cystine. Cysteine is synthesized from methionine via the trans-sulfuration pathway in the adult, but newborn infants lack the enzyme, cystathionase, necessary to effect this conversion. Therefore, cysteine is generally considered to be an essential amino acid in infants.
Status:
First approved in 1952
Source:
Rimifon by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Isoniazid is a bactericidal agent active against organisms of the genus Mycobacterium, specifically M. tuberculosis, M. bovis and M. kansasii. Isoniazid is recommended for all forms of tuberculosis in which organisms are susceptible. Isoniazid is a prodrug and must be activated by bacterial catalase. Isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. The most frequent adverse reactions to isoniazid are those affecting the nervous system and the liver.
Leucovorin is a compound similar to folic acid, which is a necessary vitamin. It has been around and in use for many decades. Leucovorin is a medication frequently used in combination with the chemotherapy drugs fluoruracil and methotrexate. Leucovorin is not a chemotherapy drug itself, however it is used in addition to these chemotherapy drugs to enhance anticancer effects (with fluorouracil) or to help prevent or lessen side effects (with methotrexate). Leucovorin is also used by itself to treat certain anemia problems when folic acid deficiency is present.
Levoleucovorin is the pharmacologically active isomer of leucovorin or 5-formyl tetrahydrofolic acid, a folate analog . Levoleucovorin does not require reduction by the enzyme dihydrofolate reductase in order to participate in reactions utilizing folates as a source of “onecarbon” moieties. Administration of levoleucovorin can counteract the therapeutic and toxic effects of folic acid antagonists such as methotrexate, which act by inhibiting dihydrofolate reductase. Levoleucovorin can enhance the therapeutic and toxic effects of fluoropyrimidines used in cancer therapy such as 5-fluorouracil. 5-fluorouracil is metabolized to 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP), which binds to and inhibits thymidylate synthase (an enzyme important in DNA repair and replication). Levoleucovorin is readily converted to another reduced folate, 5,10-methylenetetrahydrofolate, which acts to stabilize the binding of FdUMP to thymidylate synthase and thereby enhances the inhibition of this enzyme. Fusilev® (levoleucovorin) is approved by FDA for i) rescue after high-dose methotrexate therapy in osteosarcoma, ii) diminishing the toxicity and counteracting the effects of impaired methotrexate elimination and of inadvertent overdosage of folic acid antagonists and iii) in combination chemotherapy with 5-fluorouracil in the palliative treatment of patients with advanced metastatic colorectal cancer.
Hydrocortisone is the main glucocorticoid secreted by the adrenal cortex. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). Hydrocortisone is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease.
Disulfiram is a carbamate derivative used as an alcohol deterrent. It is a relatively nontoxic substance when administered alone, but markedly alters the intermediary metabolism of alcohol. Disulfiram blocks the oxidation of alcohol at the acetaldehyde stage during alcohol metabolism following disulfiram intake causing an accumulation of acetaldehyde in the blood producing highly unpleasant symptoms. Disulfiram blocks the oxidation of alcohol through its irreversible inactivation of aldehyde dehydrogenase, which acts in the second step of ethanol utilization. In addition, disulfiram competitively binds and inhibits the peripheral benzodiazepine receptor, which may indicate some value in the treatment of the symptoms of alcohol withdrawal, however this activity has not been extensively studied. Used for the treatment and management of chronic alcoholism.
Status:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)



Methimazole (also known as Tapazole or Thiamazole or MMI) is an antithyroid drug. Methimazole binds to thyroid peroxidase and thereby inhibits the conversion of iodide to iodine. Thyroid peroxidase normally converts iodide to iodine (via hydrogen peroxide as a cofactor) and also catalyzes the incorporation of the resulting iodide molecule onto both the 3 and/or 5 positions of the phenol rings of tyrosines found in thyroglobulin. Thyroglobulin is degraded to produce thyroxine (T4) and tri-iodothyronine (T3), which are the main hormones produced by the thyroid gland. So methimazole effectively inhibits the production of new thyroid hormones. Methimazole is used for the treatment of hyperthyroidism, goiter, Graves disease and psoriasis.
Mechlorethamine also known as mustine, brand name MUSTARGEN administered intravenously is the prototype anticancer chemotherapeutic drug, is indicated for the palliative treatment of Hodgkin's disease (Stages III and IV), lymphosarcoma, chronic myelocytic or chronic lymphocytic leukemia, polycythemia vera, mycosis fungoides, and bronchogenic carcinoma. In 2013 was approved orphan drug Valchlor (mechlorethamine) gel for the topical treatment of stage IA and IB mycosis fungoides-type cutaneous T-cell lymphoma (CTCL) in patients who have received prior skin-directed therapy. Mechlorethamine belongs to the group of nitrogen mustard alkylating agents. Alkylating agents work by three different mechanisms: attachment of alkyl groups to DNA bases, resulting in the DNA being fragmented by repair enzymes in their attempts to replace the alkylated bases, 2) DNA damage via the formation of cross-links (bonds between atoms in the DNA) which prevents DNA from being separated for synthesis or transcription, and 3) the induction of mispairing of the nucleotides leading to mutations all of which achieve the same end result - disruption of DNA function and cell death.
Status:
First approved in 1948
Source:
Sodium Aminosalicylate by Various Mfrs.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



4-AMINOSALICYLIC ACID (Paser) is an anti-tuberculosis drug used to treat tuberculosis in combination with other active agents. 4-AMINOSALICYLIC ACID (Paser) is most commonly used in patients with Multi-drug Resistant TB (MDR-TB) or when isoniazid and rifampin use is not possible due to a combination of resistance and/or intolerance. There are two mechanisms responsible for aminosalicylic acid's bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in the folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slow. Secondly, the aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis.