{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
valproic acid
to a specific field?
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(2025)
Source:
ANDA218746
(2025)
Source URL:
First approved in 1983
Source:
BUMEX by VALIDUS PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Bumetanide is indicated for the treatment of edema associated with congestive heart failure, hepatic and renal disease, including the nephrotic syndrome. It blocks the reabsorption of sodium and fluid from the kidney's tubules. The most frequent clinical adverse reactions considered probably or possibly related to bumetanide are muscle cramps (seen in 1.1% of treated patients), dizziness (1.1%), hypotension (0.8%), headache (0.6%), nausea (0.6%) and encephalopathy (in patients with preexisting liver disease) (0.6%). One or more of these adverse reactions have been reported in approximately 4.1% of patients treated with Bumex (bumetanide). Lithium should generally not be given with diuretics (such as Bumex (bumetanide)) because they reduce its renal clearance and add a high risk of lithium toxicity. Bumex (bumetanide) may potentiate the effect of various antihypertensive drugs, necessitating a reduction in the dosage of these drugs.
Status:
US Approved Rx
(2025)
Source:
NDA219488
(2025)
Source URL:
First approved in 1983
Source:
CHENIX by LEADIANT BIOSCI INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2003)
Source:
ANDA065135
(2003)
Source URL:
First approved in 1983
Source:
ZINACEF by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefuroxime is a semisynthetic, broad-spectrum, cephalosporin antibiotic. Cefuroxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefuroxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefuroxime has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infection: Enterobacter spp., Escherichia coli, Klebsiella spp., Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes. Cefuroxime is indicated for the treatment of patients with septicemia, meningitis, gonorrhea, lower respiratory tract, urinary tract, skin and skin-structure, bone and joint infections caused by susceptible strains of the designated organisms.
Status:
US Approved Rx
(1991)
Source:
NDA019998
(1991)
Source URL:
First approved in 1982
Source:
NDA214993
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
Succimer is an analogue of dimercaprol, and has replaced dimercaprol as one of the main antidotes used in the management of poisoning by lead and other heavy metals. The advantages of succimer are that it is effective by oral administration because it is soluble in water, it is well-tolerated, has relatively low toxicity and can be given at the same time as iron supplements to treat iron deficiency anaemia. It does not cause significant increase in urinary excretion of essential minerals unlike the other widelyused lead chelating agent, sodium calcium EDTA.
Status:
US Approved Rx
(2014)
Source:
ANDA204605
(2014)
Source URL:
First approved in 1982
Source:
ZOVIRAX by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Acyclovir is a synthetic antiviral nucleoside analogue. A screening program for antiviral drugs begun at Burroughs Wellcome in the 1960s resulted in the discovery of acyclovir in 1974. Preclinical investigation brought the drug to clinical trials in 1977 and the first form of the drug (topical) was available to physicians in 1982. Activity of acyclovir is greatest against herpes 1 and herpes 2, less against varicella zoster, still less against Epstein-Barr, and very little against cytomegalovirus. Acyclovir is an antiviral agent only after it is phosphorylated in infected cells by a viral-induced thymidine kinase. Acyclovir monophosphate is phosphorylated to diphosphate and triphosphate forms by cellular enzymes in the infected host cell where the drug is concentrated. Acyclovir triphosphate inactivates viral deoxyribonucleic acid polymerase.
Status:
US Approved Rx
(2017)
Source:
ANDA206136
(2017)
Source URL:
First approved in 1982
Source:
NDA018147
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Piroxicam is in a class of drugs called nonsteroidal anti-inflammatory drugs (NSAIDs). It was originally brought to market by Pfizer under the tradename Feldene in 1980, became generic in 1992, and is marketed worldwide under many brandnames. Piroxicam works by reducing hormones that cause inflammation and pain in the body. Piroxicam is used to reduce the pain, inflammation, and stiffness caused by rheumatoid arthritis and osteoarthritis. The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. Piroxicam is used for treatment of osteoarthritis and rheumatoid arthritis.
Status:
US Approved Rx
(2017)
Source:
ANDA203547
(2017)
Source URL:
First approved in 1982
Source:
DOLOBID by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Diflunisal is a salicylic acid derivative with analgesic and anti-inflammatory activity. It was developed by Merck Sharp & Dohme in 1971 after showing promise in a research project studying more potent chemical analogs of aspirin. Diflunisal is an aspirin-like nonsteroidal anti-inflammatory drug that inhibits cyclooxygenase-2 (COX-2), an enzyme involved in prostaglandin synthesis.In animals, prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain. Since prostaglandins are known to be among the mediators of pain and inflammation, the mode of action of diflunisal may be due to a decrease of prostaglandins in peripheral tissues.
Status:
US Approved Rx
(1994)
Source:
ANDA074063
(1994)
Source URL:
First approved in 1982
Source:
VISKEN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Pindolol was developed at Sandoz at 1960s. Pindolol is a nonselective beta-adrenergic antagonist (beta-blocker) which possesses intrinsic sympathomimetic activity (partial agonist activity) in therapeutic dosage ranges but does not possess quinidine-like membrane stabilizing activity. The partial beta-adrenergic agonistic activity of pindolol in the heart appears to be completely restricted to the sinoatrial pacemaker. In standard pharmacologic tests in man and animals, Pindolol attenuates increases in heart rate, systolic blood pressure, and cardiac output resulting from exercise and isoproterenol administration, thus confirming its beta-blocking properties. In addition to beta-adrenergic activity pindolol demonstrates mixed agonist-antagonist activity at central 5-HT receptors. Although in accordance with the hypothesis that pindolol increases the antidepressant effects of selective serotonin reuptake inhibitors by antagonism of 5-HT at inhibitory 5-HT1A autoreceptors, pindolol possesses partial agonist activity at 5-HT1A receptors. Pindolol tablets are indicated in the management of hypertension.
Status:
US Approved Rx
(2012)
Source:
ANDA091559
(2012)
Source URL:
First approved in 1982
Source:
OVIDE by TARO
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Malathion is an organophosphate insecticide, an inhibitor of cholinesterase. In low doses (0.5%) malathion is used for treatment of pediculosis and scabies.