U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 38 of 38 results

Ramipril (sold under the brand name Altace ) is a prodrug belonging to the angiotensin-converting enzyme (ACE) inhibitors. It is metabolized to ramiprilat in the liver and, to a lesser extent, kidneys. Ramiprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Ramipril is indicated for the treatment of hypertension, to lower blood pressure; also used to reduce the risk of myocardial infarction, stroke, or death from cardiovascular causes; in addition, this drug is used to reduce the rate of death, myocardial infarction and stroke in individuals at high risk of cardiovascular events.
Lovastatin acid is an active metabolite of hypolipidemic drug Lovastatin. Lovastatin acid inhibits HMG-CoA reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol. Lovastatin has been shown to reduce both normal and elevated low-density lipoprotein cholesterol (LDL-C). Lovastatin in approved for prevention of cardiovascular events and hypercholesterolemia. Off-label use of lovastatin includes treatmetn of diabetic dyslipidemia, familial dysbetalipoproteinemia, familial combined hyperlipidemia, or nephrotic hyperlipidemia. Lovastatin was tested in clinical trials agains radioation injury during therapy of prostate cancer.
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cerivastatin (BAYCOL®) is a competitive inhibitor of HMG-CoA reductase, which is responsible for the conversion of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) to mevalonate, a precursor of sterols, including cholesterol. The inhibition of cholesterol biosynthesis by cerivastatin reduces the level of cholesterol in hepatic cells, which stimulates the synthesis of low-density lipoprotein (LDL) receptors, thereby increasing the uptake of cellular LDL particles. The end result of these biochemical processes is a reduction of the plasma cholesterol concentration. On August 8, 2001 the U.S. Food and Drug Administration (FDA) announced that Bayer Pharmaceutical Division voluntarily withdrew BAYCOL® from the U.S. market, due to reports of fatal rhabdomyolysis, a severe adverse reaction from this cholesterol-lowering (lipid-lowering) product. It has also been withdrawn from the Canadian market.
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.