{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ATC|CARDIOVASCULAR SYSTEM|LIPID MODIFYING AGENTS" in comments (approximate match)
Status:
US Approved Rx
(2015)
Source:
BLA125559
(2015)
Source URL:
First approved in 2015
Source:
BLA125559
Source URL:
Class:
PROTEIN
Status:
US Previously Marketed
Source:
KYNAMRO by KASTLE THERAPS LLC
(2013)
Source URL:
First approved in 2013
Source:
KYNAMRO by KASTLE THERAPS LLC
Source URL:
Class:
NUCLEIC ACID
Status:
US Approved Rx
(2019)
Source:
ANDA208670
(2019)
Source URL:
First approved in 2000
Source:
WELCHOL by COSETTE
Source URL:
Class:
POLYMER
Targets:
Colesevelam (trade name Welchol) a non-absorbed, polymeric, lipid-lowering agent intended for oral administration. Colesevelam is poly(allylamine hydrochloride) cross-linked with epichlorohydrin and alkylated with 1-bromodecane and (6-bromohexyl)-trimethylammonium bromide. Colesevelam hydrochloride is a hydrophilic, water-insoluble polymer that is not hydrolyzed by digestive enzymes and is not absorbed. Colesevelam is part of a class of drugs known as bile acid sequestrants. Colesevelam hydrochloride, the active pharmaceutical ingredient in Welchol, is a non-absorbed, lipid-lowering polymer that binds bile acids in the intestine, impeding their reabsorption. As the bile acid pool becomes depleted, the hepatic enzyme, cholesterol 7-α-hydroxylase, is upregulated, which increases the conversion of cholesterol to bile acids. This causes an increased demand for cholesterol in the liver cells, resulting in the dual effect of increasing transcription and activity of the cholesterol biosynthetic enzyme, HMG-CoA reductase, and increasing the number of hepatic LDL receptors. These compensatory effects result in increased clearance of LDL-C from the blood, resulting in decreased serum LDL-C levels. Colesevelam is indicated as an adjunct to diet and exercise to reduce elevated low-density lipoprotein cholesterol (LDL-C) in patients with primary hyperlipidemia as monotherapy and to improve glycemic control in adults with type 2 diabetes mellitus, including in combination with a statin. The expanded use of colesevelam in adults with type 2 diabetes mellitus is an example of drug repositioning.
Status:
US Approved Rx
(2024)
Source:
ANDA217667
(2024)
Source URL:
First approved in 1977
Class:
POLYMER
Tetraethylenepentamine (TEPA) is a low-molecular-weight linear polyamine exerting metal-chelating properties. TEPA is widely used in industrial applications. The principal hazards that arise in working with TEPA are those associated with similar organic amines; namely, a corrosive action on skin and eyes. TEPA biological activity was attributed to its effect on cellular Cu levels as (a) treatment with TEPA resulted in reduction of cellular Cu, and (b) excess of Cu reversed TEPA's activity and accelerated differentiation. TEPA was shown to attenuate the differentiation of ex vivo cultured hematopoietic cells resulting in preferential expansion of early progenitors. A phase I/II trial was performed to test the feasibility and safety of transplantation of CD133+ cord blood (CB) hematopoietic progenitors cultured in media containing stem cell factor, FLT-3 ligand, interleukin-6, thrombopoietin and TEPA. Transplanting a population of CD133+ CB cells which were expanded ex vivo for 21 days using SCF, FLT3, IL-6, TPO and the copper chelator TEPA (StemEx) was feasible. The expanded cells were well tolerated, with no infusion-related adverse events observed.
Status:
US Approved Rx
(2024)
Source:
ANDA207294
(2024)
Source URL:
First approved in 1964
Class:
POLYMER
Status:
Possibly Marketed Outside US
Class:
STRUCTURALLY DIVERSE
Status:
US Approved Rx
(2020)
Source:
ANDA213450
(2020)
Source URL:
First approved in 2008
Source:
NDA022224
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Status:
US Approved Rx
(2009)
Source:
ANDA079070
(2009)
Source URL:
First approved in 1993
Source:
ACEON by SYMPLMED PHARMS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.
Status:
US Approved Rx
(2008)
Source:
ANDA078191
(2008)
Source URL:
First approved in 1991
Source:
NDA019901
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ramipril (sold under the brand name Altace ) is a prodrug belonging to the angiotensin-converting enzyme (ACE) inhibitors. It is metabolized to ramiprilat in the liver and, to a lesser extent, kidneys. Ramiprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Ramipril is indicated for the treatment of hypertension, to lower blood pressure; also used to reduce the risk of myocardial infarction, stroke, or death from cardiovascular causes; in addition, this drug is used to reduce the rate of death, myocardial infarction and stroke in individuals at high risk of cardiovascular events.