U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 21518 results

Artenimol (dihydroartemisinin) is a derivate of antimalarial compound artemisinin. Artenimol (dihydroartemisinin) is able to reach high concentrations within the parasitized erythrocytes. Its endoperoxide bridge is thought to be essential for its antimalarial activity, causing free-radical damage to parasite membrane systems including: • Inhibition of falciparum sarcoplasmic-endoplasmic reticulum calcium ATPase, • Interference with mitochondrial electron transport • Interference with parasite transport proteins • Disruption of parasite mitochondrial function. Dihydroartemisinin in combination with piperaquine tetraphosphate (Eurartesim, EMA-approved in 2011) is indicated for the treatment of uncomplicated Plasmodium falciparum malaria. The formulation meets WHO recommendations, which advise combination treatment for Plasmodium falciparum malaria to reduce the risk of resistance development, with artemisinin-based preparations regarded as the ‘policy standard’. However, experimental testing demonstrates that, due to its intrinsic chemical instability, dihydroartemisinin is not suitable to be used in pharmaceutical formulations. In addition, data show that the currently available dihydroartemisinin preparations fail to meet the internationally accepted stability requirements.
Lurbinectedin (PM-01183) - is a synthetic tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one alkaloid analogue with potential antineoplastic activity. Lurbinectedin covalently binds to residues lying in the minor groove of DNA, which may result in delayed progression through S phase, cell cycle arrest in the G2/M phase and cell death. Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells.
KX-01 is a dual inhibitor of Src kinase and tubulin polymerization. KX01 promotes the induction of p53, G2/M arrest of proliferating cell populations and subsequent apoptosis via the stimulation of Caspase-3 and PARP cleavage. The drug was developed by Kinex Pharmaceuticals and reached phase II of clinical trials for the treatment of Castration-Resistant Prostate Cancer and Actinic Keratosis. KX-01 demonstrated good in vitro pofile against different cancer cell lines with IC50 in nanomolar range.
Erdafitinib (JNJ-42756493) is a potent and selective orally bioavailable, pan fibroblast growth factor receptor (FGFR) inhibitor with potential antineoplastic activity. It was discovered in collaboration with Janssen Pharmaceutica, N.V. from a partnership which commenced in June 2008. Astex’s FGFr inhibitor program originated from a collaboration initiated in 2005 with the Cancer Research UK Drug Discovery Group at the Newcastle Cancer Centre (Newcastle University UK), and Cancer Research Technology Limited. JNJ42756493 is currently being evaluated by Janssen in Phase 2 clinical trials in patients with urothelial cancer, advanced hepatocellular carcinoma, advanced non-small lung cancer, esophageal cancer or cholangiocarcinoma. JNJ-42756493 is a potent, oral pan-FGFR tyrosine kinase inhibitor with half-maximal inhibitory concentration values in the low nanomolar range for all members of the FGFR family (FGFR1 to FGFR4), with minimal activity on vascular endothelial growth factor receptor (VEGFR) kinases compared with FGFR kinases (approximately 20-fold potency difference). In vitro, the proliferation of cells treated with JNJ-42756493 is decreased, associated with increased apoptotic death and decreased cell survival. It is also in phase I trials for the treatment of advanced refractory solid tumors or advanced refractory hematologic cancer.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Afamelanotide (SCENESSE) is a synthetic α-melanocyte stimulating hormone analog and first-in-class melanocortin-1 receptor agonist that is approved in the EU for the prevention of phototoxicity in adults with erythropoietic protoporphyria. Afamelanotide differs from endogenous α-melanocyte stimulating hormone at the fourth and seventh amino acid residues, increasing its resistance to immediate degradation and increasing its binding time to melanocortin-1 receptor. Afamelanotide is mimic the pharmacological activity of α-melanocyte stimulating hormone by binding to the melanocortin-1 receptor on melanocytes and activating the synthesis of eumelanin. Eumelanin provides photoprotection through mechanisms including, but not limited to, the absorption and scattering of visible and UV light and antioxidant activity. Afamelanotide increases eumelanin density in healthy volunteers and patients with erythropoietic protoporphyria. In healthy, fair-skinned volunteers, a significant increase in melanin density and skin darkening in both sun-exposed and non-sun-exposed sites was seen with subcutaneous injections of afamelanotide. The most common afamelanotide adverse events included headache and nausea. Common adverse effects include back pain, upper respiratory tract infections, decreased appetite, migraine, and dizziness.
Bremelanotide (formerly PT-141) was developed for the treatment of female sexual dysfunction, hemorrhagic shock, and reperfusion injury. Bremelanotide, a synthetic peptide analog of α-melanocyte-stimulating hormone (α-MSH) is an agonist at melanocortin receptors including the MC3R and MC4R, which are expressed primarily in the central nervous system. Bremelanotide originally was tested for intranasal administration in treating female sexual dysfunction but this application was temporarily discontinued in 2008 after concerns were raised over adverse side effects of increased blood pressure. It appears that development for hemorrhagic shock and reperfusion injury has been discontinued. Palatin Technologies licensed North American development and commercialization rights of bremelanotide to Amag in January 2017. In June 2018, the US Food and Drug Administration (FDA) accepted AMAG Pharmaceuticals’ new drug application for bremelanotide for treatment of hypoactive sexual desire disorder in premenopausal women. If approved, bremelanotide will be available as a self-administered, disposable subcutaneous auto-injector used in anticipation of a sexual encounter.
Lumateperone (ITI-722/ITI-007) is a dual 5HT2A receptor antagonist/dopamine phosphoprotein modulator (DPPM) for the treatment of schizophrenia. It is an orally available compound which combines potent 5HT2A receptor antagonism with cell-type-specific modulation of phosphoprotein pathways downstream of dopamine receptors. Lumateperone was developed by Intra-Cellular Therapies, Inc., and is being evaluated for the treatment of schizophrenia and bipolar depression. In 3 efficacy studies in patients with acute schizophrenia, lumateperone was well-tolerated with a favorable safety profile, and in 2 studies of 3 demonstrated significantly superior efficacy over placebo.

Class (Stereo):
CHEMICAL (ABSOLUTE)

LEFAMULIN is a pleuromutilin antibiotic under development for the treatment of community-acquired bacterial pneumonia, as well as acute bacterial skin and skin structure infections. It inhibits bacterial protein synthesis by binding to the peptidyl transferase center of the 50S ribosome, resulting in the cessation of bacterial growth.
ADX-N05, originally discovered by SK Holdings, is a selective dopamine and norepinephrine reuptake inhibitor (DNRI). ADX-N05 (Solriamfetol, sold under the brand name Sunosi) is approved in the US and is under regulatory review in the EU to improve wakefulness in adult patients with hypersomnia associated with narcolepsy or obstructive sleep apnoea.The US FDA has approved solriamfetol (Sunosi, Jazz Pharmaceuticals) for the treatment of excessive daytime sleepiness in adults with narcolepsy or obstructive sleep apnea.The dual-acting dopamine and norepinephrine reuptake inhibitor is approved for narcolepsy in once-daily 75 mg and 150 mg doses, and in obstructive sleep apnea in once-daily 37.5 mg, 75 mg, and 150 mg doses.
Alpelisib (BYL719) is a PI3Kα-selective inhibitor. PI3K-AKT-mTOR pathway is frequently activated in cancer, therefore investigational PI3K inhibitor alpelisib is considered to be effective as an anticancer agent and has been in clinical development by Novartis. Alpelisib have demonstrated activity in preclinical models of solid tumors and had favorable tolerability profiles, with the most common adverse events consistent with “on-target” inhibition of PI3K in early clinical studies. There are ongoing clinical trials of alpelisib in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme. Combination therapy with other chemo therapeutics may be preferable.